Blow-up phenomena for a nonlocal semilinear parabolic equation with positive initial energy

被引:53
作者
Khelghati, Ali [1 ]
Baghaei, Khadijeh [1 ]
机构
[1] PNU, Dept Math, Tehran, Iran
关键词
Parabolic equation; Neumann boundary condition; Blow-up; Positive initial energy;
D O I
10.1016/j.camwa.2015.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the blow-up of solutions to the following semilinear parabolic equation: u(t) = Delta u + vertical bar u vertical bar(p-1)u - 1/vertical bar Omega vertical bar integral(Omega) vertical bar u vertical bar(p-1)u dx, x is an element of Omega, t > 0, under homogeneous Neumann boundary condition in a bounded domain Omega subset of R-n, n >= 1, with smooth boundary. For all p > 1, we prove that the classical solutions to the above equation blow up in finite time when the initial energy is positive and initial data is suitably large. This result improves a recent result by Gao and Han (2011) which asserts the blow-up of classical solutions for n >= 3 provided that 1 < p <= n+2/n-2. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:896 / 902
页数:7
相关论文
共 9 条
[1]  
[Anonymous], 2007, BIRKHAUSER ADV TEXTS
[2]   TOTAL BLOW-UP VERSUS SINGLE POINT BLOW-UP [J].
BEBERNES, J ;
BRESSAN, A ;
LACEY, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 73 (01) :30-44
[3]   A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions [J].
El Soufi, A. ;
Jazar, M. ;
Monneau, R. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (01) :17-39
[4]   LOCAL VS NON-LOCAL INTERACTIONS IN POPULATION-DYNAMICS [J].
FURTER, J ;
GRINFELD, M .
JOURNAL OF MATHEMATICAL BIOLOGY, 1989, 27 (01) :65-80
[5]   Blow-up of a nonlocal semilinear parabolic equation with positive initial energy [J].
Gao, Wenjie ;
Han, Yuzhu .
APPLIED MATHEMATICS LETTERS, 2011, 24 (05) :784-788
[6]  
Hu B., 1995, Rendiconti del Circolo Matematico di Palermo, V44, P479
[7]   Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions [J].
Jazar, M. ;
Kiwan, R. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (02) :215-218
[8]  
Kalantarov V. K., 1977, Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta Steklova, V69, P77
[9]  
LEVINE HA, 1973, ARCH RATION MECH AN, V51, P371