Vector-Valued Local Approximation Spaces

被引:1
|
作者
Hytonen, Tuomas [1 ]
Merikoski, Jori [1 ,2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, POB 68,Gustaf Hallstromin Katu 2b, FIN-00014 Helsinki, Finland
[2] Univ Turku, Dept Math & Stat, Turku 20014, Finland
基金
欧洲研究理事会;
关键词
Local approximation space; Besov space; Embedding; Uniformly convex space; Martingale cotype; Littlewood-Paley theory; SOBOLEV SPACES; BESOV-SPACES;
D O I
10.1007/s00041-018-9598-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for every Banach space Y, the Besov spaces of functions from the n-dimensional Euclidean space to Y agree with suitable local approximation spaces with equivalent norms. In addition, we prove that the Sobolev spaces of type q are continuously embedded in the Besov spaces of the same type if and only if Y has martingale cotype q. We interpret this as an extension of earlier results of Xu (J Reine Angew Math 504:195-226, 1998), and Martinez et al. (Adv Math 203(2):430-475, 2006). These two results combined give the characterization that Y admits an equivalent norm with modulus of convexity of power type q if and only if weakly differentiable functions have good local approximations with polynomials.
引用
收藏
页码:299 / 320
页数:22
相关论文
共 50 条
  • [1] Vector-Valued Local Approximation Spaces
    Tuomas Hytönen
    Jori Merikoski
    Journal of Fourier Analysis and Applications, 2019, 25 : 299 - 320
  • [2] Pointwise Multiplication on Vector-Valued Function Spaces with Power Weights
    Meyries, Martin
    Veraar, Mark
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2015, 21 (01) : 95 - 136
  • [3] Embeddings of Lorentz spaces of vector-valued martingales
    Jiao, Yong
    Ma, Tao
    Liu, Peide
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2010, 44 (03) : 237 - 240
  • [4] Embeddings of Lorentz spaces of vector-valued martingales
    Yong Jiao
    Tao Ma
    Peide Liu
    Functional Analysis and Its Applications, 2010, 44 : 237 - 240
  • [5] Traces of vector-valued Sobolev spaces
    Scharf, Benjamin
    Schmeisser, Hans-Juergen
    Sickel, Winfried
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (8-9) : 1082 - 1106
  • [6] Sobolev spaces of vector-valued functions
    Caamano, Ivan
    Jaramillo, Jesus A.
    Prieto, Angeles
    Ruiz de Alarcon, Alberto
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 115 (01)
  • [7] Sobolev spaces of vector-valued functions
    Iván Caamaño
    Jesús Á. Jaramillo
    Ángeles Prieto
    Alberto Ruiz de Alarcón
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [8] Refined limiting imbeddings for Sobolev spaces of vector-valued
    Krbec, M
    Schmeisser, HJ
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 227 (02) : 372 - 388
  • [9] Characterizing Sobolev spaces of vector-valued functions
    Caamano, Ivan
    Jaramillo, Jesus A.
    Prieto, Angeles
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)
  • [10] Pointwise Multiplication on Vector-Valued Function Spaces with Power Weights
    Martin Meyries
    Mark Veraar
    Journal of Fourier Analysis and Applications, 2015, 21 : 95 - 136