Electronic Properties of Halogen-Adsorbed Graphene

被引:40
作者
Xu, Chengyong [1 ]
Brown, Paul A. [1 ]
Lu, Jing [2 ,3 ]
Shuford, Kevin L. [1 ]
机构
[1] Baylor Univ, Dept Chem & Biochem, Waco, TX 76798 USA
[2] Peking Univ, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[3] Peking Univ, Dept Phys, Beijing 100871, Peoples R China
关键词
FIELD; BANDGAP; ADSORPTION; MOLECULES; CHLORINE; GRAPHITE; WATER; BR-2;
D O I
10.1021/acs.jpcc.5b05595
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have investigated the electronic properties of 1-, 2-, and 3-layer graphene upon surface adsorption of halogen molecules by means of density functional calculations. The most stable adsorption site is parallel to the graphene surface with the diatomic atoms centered over adjacent carbon rings. Bader analysis shows a large charge transfer between F-2 and graphene, which significantly extends the fluorine bond length, while only small amounts of charge are transferred to Cl-2, Br-2, and I-2. Adsorbed halogens alter the electronic properties of graphene by pushing file Fermi level down and bringing forth an accessible impurity band that can be utilized to alter the material properties. Moreover, molecule surface interactions introduce a bandgap at the K-point between 3 and 330 meV, depending upon the particular graphene-halogen system. When adsorbed on 1-layer graphene, halogen molecules typically open a small bandgap; however, they induce a notably larger bandgap on the 2-layer AB-stacked and 3-layer ABC-stacked graphene. This work suggests an effective way to tune the electronic properties of two-dimensional graphene by adsorption of halogen molecules.
引用
收藏
页码:17271 / 17277
页数:7
相关论文
共 61 条
  • [1] Properties of graphene: a theoretical perspective
    Abergel, D. S. L.
    Apalkov, V.
    Berashevich, J.
    Ziegler, K.
    Chakraborty, Tapash
    [J]. ADVANCES IN PHYSICS, 2010, 59 (04) : 261 - 482
  • [2] Tunable properties of few-layer graphene-N-methylpyrrolidone hybrid structures
    Antonova, Irina V.
    Kotin, Igor A.
    Soots, Regina A.
    Volodin, Vladimir A.
    Prinz, Victor Ya
    [J]. NANOTECHNOLOGY, 2012, 23 (31)
  • [3] Dependence of band structures on stacking and field in layered graphene
    Aoki, Masato
    Amawashi, Hiroshi
    [J]. SOLID STATE COMMUNICATIONS, 2007, 142 (03) : 123 - 127
  • [4] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [5] LATTICE CONSTANTS OF GRAPHITE AT LOW TEMPERATURES
    BASKIN, Y
    MEYER, L
    [J]. PHYSICAL REVIEW, 1955, 100 (02): : 544 - 544
  • [6] Electronic confinement and coherence in patterned epitaxial graphene
    Berger, Claire
    Song, Zhimin
    Li, Xuebin
    Wu, Xiaosong
    Brown, Nate
    Naud, Cecile
    Mayou, Didier
    Li, Tianbo
    Hass, Joanna
    Marchenkov, Atexei N.
    Conrad, Edward H.
    First, Phillip N.
    de Heer, Wait A.
    [J]. SCIENCE, 2006, 312 (5777) : 1191 - 1196
  • [7] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [8] Graphene on ferromagnetic surfaces and its functionalization with water and ammonia
    Boettcher, Stefan
    Weser, Martin
    Dedkov, Yuriy S.
    Horn, Karsten
    Voloshina, Elena N.
    Paulus, Beate
    [J]. NANOSCALE RESEARCH LETTERS, 2011, 6
  • [9] Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations
    Boukhvalov, D. W.
    Katsnelson, M. I.
    Lichtenstein, A. I.
    [J]. PHYSICAL REVIEW B, 2008, 77 (03):
  • [10] Periodic Trends of Pnictogen Substitution into a Graphene Monovacancy: A First-Principles Investigation
    Brown, Paul A.
    Xu, Chengyong
    Shuford, Kevin L.
    [J]. CHEMISTRY OF MATERIALS, 2014, 26 (19) : 5735 - 5744