Non-isothermal crystallization behavior of U-based amorphous alloy

被引:35
作者
Ke, H. B. [1 ]
Xu, H. Y. [1 ]
Huang, H. G. [1 ]
Liu, T. W. [1 ]
Zhang, P. [1 ]
Wu, M. [1 ]
Zhang, P. G. [1 ]
Wang, Y. M. [2 ]
机构
[1] China Acad Engn Phys, Inst Mat, POB 9071, Jiangyou 621907, Sichuan, Peoples R China
[2] Dalian Univ Technol, Sch Mat Sci & Engn, Key Lab Mat Modificat Laser Ion & Electron Beams, Minist Educ, Dalian 116024, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Amorphous alloy; Uranium alloy; Crystallization; Percolation; GLASS-FORMING LIQUIDS; BULK METALLIC-GLASS; THERMAL-STABILITY; KINETICS; PERCOLATION; TEMPERATURE; FORMERS; DSC;
D O I
10.1016/j.jallcom.2016.08.252
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The non-isothermal crystallization behavior of uranium-based amorphous alloy U64Co28.5Al7.5 was investigated by using differential scanning calorimetry. Its kinetic fragility parameter, overall crystallization activation energy and Kauzmann temperature were determined to be 28, 234 kJ/mol and 580 K, respectively. The evolution of the crystallization activation energy with the volume fraction crystallized, which was established by both the Kissinger and Ozawa methods independently, suggests a typical three-staged process for the crystallization. As reflected by the change of the local Avrami exponent with the fraction crystallized, nucleation dominates the whole process that can be illustrated phenomeno-logically with the percolation model. This work is helpful for understanding the formation and thermal stability of U-based amorphous alloys, and also for the development of new materials of this kind. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:436 / 441
页数:6
相关论文
共 40 条
[21]   Microstructural percolation assisted breakthrough of trade-off between strength and ductility in CuZr-based metallic glass composites [J].
Liu, Z. Q. ;
Liu, G. ;
Qu, R. T. ;
Zhang, Z. F. ;
Wu, S. J. ;
Zhang, T. .
SCIENTIFIC REPORTS, 2014, 4
[22]   Strain rate induced crystallization in bulk metallic glass-forming liquid [J].
Lohwongwatana, B ;
Schroers, J ;
Johnson, WL .
PHYSICAL REVIEW LETTERS, 2006, 96 (07)
[23]   Percolation Model for Slow Dynamics in Glass-Forming Materials [J].
Lois, Gregg ;
Blawzdziewicz, Jerzy ;
O'Hern, Corey S. .
PHYSICAL REVIEW LETTERS, 2009, 102 (01)
[24]   Complex primary crystallization kinetics of amorphous Finemet alloy [J].
Lu, W ;
Yan, B ;
Huang, WH .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2005, 351 (40-42) :3320-3324
[25]   The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses [J].
Malek, J .
THERMOCHIMICA ACTA, 1995, 267 :61-73
[26]   Time scales for viscous flow, atomic transport, and crystallization in the liquid and supercooled liquid states of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 [J].
Masuhr, A ;
Waniuk, TA ;
Busch, R ;
Johnson, WL .
PHYSICAL REVIEW LETTERS, 1999, 82 (11) :2290-2293
[27]   Role of 5f electrons in the structural stability of light actinide (Th-U) mononitrides under pressure [J].
Modak, P. ;
Verma, Ashok K. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (12) :8682-8691
[28]   A NEW METHOD OF ANALYZING THERMOGRAVIMETRIC DATA [J].
OZAWA, T .
BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1965, 38 (11) :1881-+
[29]   Non-isothermal crystallization kinetics of Zr52Cu18Ni14Al10Ti6 metallic glass [J].
Prajapati, Sonal R. ;
Kasyap, Supriya ;
Patel, Ashmi T. ;
Pratap, Arun .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2016, 124 (01) :21-33
[30]   Crystallization kinetics in Cu46Zr45Al7Y2 bulk metallic glass by differential scanning calorimetry (DSC) [J].
Qiao, J. C. ;
Pelletier, J. M. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2011, 357 (14) :2590-2594