Low-Temperature Superplasticity in Nanocrystalline Tetragonal Zirconia Polycrystal (TZP)

被引:18
作者
Yoshida, Hidehiro [1 ]
Matsui, Koji [2 ]
Ikuhara, Yuichi [3 ]
机构
[1] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan
[2] Tosoh Corp, Tokyo Res Lab, Ayase, Kanagawa 2521123, Japan
[3] Univ Tokyo, Inst Engn Innovat, Bunkyo Ku, Tokyo 1138656, Japan
基金
日本学术振兴会;
关键词
YTTRIA-STABILIZED ZIRCONIA; STRAIN-RATE SUPERPLASTICITY; TENSILE DUCTILITY; CAVITATION DAMAGE; CAVITY FORMATION; DEFORMATION; CERAMICS; CREEP; ALUMINA; FLOW;
D O I
10.1111/j.1551-2916.2012.05150.x
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanocrystalline tetragonal ZrO2 polycrystals (TZP) have been fabricated by the pressureless sintering of recently developed tetragonal ZrO2 powder containing 5.69 mol% YO1.5 and 0.60 mol% AlO1.5. The average grain sizes were 160 nm in the TZP sintered at 1150 degrees C for 10 h and 150 nm in the 0.25 mol% GeO2-doped TZP sintered at 1100 degrees C for 100 h. The TZP and Ge4+-doped TZP-sintered bodies were essentially single-phase materials, and neither the amorphous layer nor the second-phase particle was observed along the grain boundary faces. High-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM), and nanoprobe energy-dispersive X-ray spectrometer (EDS) measurements revealed that the Y3+, Al3+ and Ge4+ cations tend to segregate in the vicinity of the grain boundaries in the TZP-sintered bodies. The TZP and Ge4+-doped TZP exhibited an elongation to failure of more than 100% in the temperature range of 1150 degrees C1300 degrees C and initial strain rate range of 1.4 x 10(-5) s-1 to 1.0 x 10(-2) s-1. For instance, an elongation to failure in the Ge-doped TZP reached about 200% at 1150 degrees C and 1.4 x 10(-5) s-1. The nanocrystallization reduced the lower limit of the superplastic temperature of conventional, submicron-grain TZP materials by 150 degrees C. The improved ductility of the TZP at low temperatures was essentially attributed to the reduced grain size.
引用
收藏
页码:1701 / 1708
页数:8
相关论文
共 50 条
[21]   Kinetics of low-temperature plasticity of nanocrystalline titanium [J].
Smolianets, R. V. ;
Moskalenko, V. A. .
LOW TEMPERATURE PHYSICS, 2020, 46 (06) :646-649
[22]   Effect of Aging Time and Thickness on Low-Temperature Degradation of Dental Zirconia [J].
Zhuang, Yongxiang ;
Zhu, Ziyuan ;
Jiao, Ting ;
Sun, Jian .
JOURNAL OF PROSTHODONTICS-IMPLANT ESTHETIC AND RECONSTRUCTIVE DENTISTRY, 2019, 28 (01) :E404-E410
[23]   Influence of the yttrium segregation at grain boundaries in the superplasticity of yttria tetragonal zirconia polyerystals [J].
Domínguez-Rodríguez, A ;
Gómez-García, D ;
Lorenzo-Martín, C ;
Muñoz-Bernabé, A .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2003, 23 (15) :2969-2973
[24]   Plasticity of nanocrystalline yttria-stabilized tetragonal zirconia polycrystals [J].
Gutiérrez-Mora, F ;
Domínguez-Rodríguez, A ;
Jiménez-Melendo, M .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2002, 22 (14-15) :2615-2620
[25]   Low-temperature superplasticity of ultrafine-grained near β titanium alloy [J].
Ratochka, I., V ;
Naydenkin, E., V ;
Mishin, I. P. ;
Lykova, O. N. ;
Zabudchenko, O., V .
JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 891
[26]   Low-temperature degradation increases the cyclic fatigue resistance of 3Y-TZP in bending [J].
Belli, Renan ;
Loher, Claudia ;
Petschelt, Anselm ;
Cicconi, Maria Rita ;
de Ligny, Dominique ;
Anglada, Marc ;
Lohbauer, Ulrich .
DENTAL MATERIALS, 2020, 36 (08) :1086-1095
[27]   Terahertz probing of low-temperature degradation in zirconia bioceramics [J].
Ahmed, Shafique ;
Zhang, Man ;
Koval, Vladimir ;
Zou, Lifong ;
Shen, Zhijian ;
Chen, Riqing ;
Yang, Bin ;
Yan, Haixue .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2022, 105 (02) :1106-1115
[28]   Contribution of grain boundary sliding in low-temperature superplasticity of ultrafine-grained aluminum alloys [J].
Liu, F. C. ;
Ma, Z. Y. .
SCRIPTA MATERIALIA, 2010, 62 (03) :125-128
[29]   Low-temperature superplasticity of Al-Mg-Sc alloy produced by friction stir processing [J].
Liu, F. C. ;
Ma, Z. Y. ;
Chen, L. Q. .
SCRIPTA MATERIALIA, 2009, 60 (11) :968-971
[30]   Composite Resin to Yttria Stabilized Tetragonal Zirconia Polycrystal Bonding: Comparison of Repair Methods [J].
Cristoforides, P. ;
Amaral, R. ;
May, L. G. ;
Bottino, M. A. ;
Valandro, L. F. .
OPERATIVE DENTISTRY, 2012, 37 (03) :263-271