Multilabel Classification with Principal Label Space Transformation

被引:217
作者
Tai, Farbound [1 ]
Lin, Hsuan-Tien [1 ]
机构
[1] Natl Taiwan Univ, Dept Comp Sci, Taipei 106, Taiwan
关键词
FRAMEWORK;
D O I
10.1162/NECO_a_00320
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider a hypercube view to perceive the label space of multilabel classification problems geometrically. The view allows us not only to unify many existing multilabel classification approaches but also design a novel algorithm, principal label space transformation (PLST), that captures key correlations between labels before learning. The simple and efficient PLST relies on only singular value decomposition as the key step. We derive the theoretical guarantee of PLST and evaluate its empirical performance using real-world data sets. Experimental results demonstrate that PLST is faster than the traditional binary relevance approach and is superior to the modern compressive sensing approach in terms of both accuracy and efficiency.
引用
收藏
页码:2508 / 2542
页数:35
相关论文
共 28 条
[1]  
Ando RK, 2005, J MACH LEARN RES, V6, P1817
[2]  
[Anonymous], 2008, ISMIR
[3]  
[Anonymous], 2009, WEKA DATA MINING SOF
[4]   Hierarchical multi-label prediction of gene function [J].
Barutcuoglu, Z ;
Schapire, RE ;
Troyanskaya, OG .
BIOINFORMATICS, 2006, 22 (07) :830-836
[5]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[6]   Learning multi-label scene classification [J].
Boutell, MR ;
Luo, JB ;
Shen, XP ;
Brown, CM .
PATTERN RECOGNITION, 2004, 37 (09) :1757-1771
[7]  
Clare A., 2001, Lecture Notes in Computer Science, P42
[8]  
Csiszar I., 1995, MAXIMUM ENTROPY BAYE, P35
[9]  
Datta B.N., 1995, Numerical Linear Algebra and Applications
[10]  
Dembczynski K., 2010, P 2 WORKSH LEARN MUL