Steady-state nonlinear heat conduction in composite materials using the method of fundamental solutions

被引:42
作者
Karageorghis, A. [1 ]
Lesnic, D. [2 ]
机构
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
[2] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England
关键词
nonlinear heat conduction; composite materials; method of fundamental solutions;
D O I
10.1016/j.cma.2008.02.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The steady-state heat conduction in composite (layered) heat conductors with temperature dependent thermal conductivity and mixed boundary conditions involving convection and radiation is investigated using the method of fundamental solutions with domain decomposition. The locations of the singularities outside the solution domain are optimally determined using a non-linear least-squares procedure. Numerical results for non-linear bimaterials are presented and discussed. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:3122 / 3137
页数:16
相关论文
共 34 条
[1]   A new method of fundamental solutions applied to nonhomogeneous elliptic problems [J].
Alves, CJS ;
Chen, CS .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2005, 23 (1-2) :125-142
[2]  
[Anonymous], 1980, MINPACK PROJECT
[3]   NON-LINEAR HEAT-CONDUCTION IN COMPOSITE BODIES - A BOUNDARY ELEMENT FORMULATION [J].
AZEVEDO, JPS ;
WROBEL, LC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1988, 26 (01) :19-38
[4]   Stress intensity factor computation using the method of fundamental solutions: Mixed-mode problems [J].
Berger, J. R. ;
Karageorghis, Andreas ;
Martin, P. A. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 69 (03) :469-483
[5]  
Berger JR, 1999, INT J NUMER METH ENG, V45, P1681, DOI 10.1002/(SICI)1097-0207(19990820)45:11<1681::AID-NME649>3.0.CO
[6]  
2-T
[7]   The method of fundamental solutions for layered elastic materials [J].
Berger, JR ;
Karageorghis, A .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2001, 25 (10) :877-886
[8]   BOUNDARY-VALUE-PROBLEMS IN HEAT-CONDUCTION WITH NON-LINEAR MATERIAL AND NON-LINEAR BOUNDARY-CONDITIONS [J].
BIALECKI, R ;
NOWAK, AJ .
APPLIED MATHEMATICAL MODELLING, 1981, 5 (06) :417-421
[9]   BOUNDARY ELEMENT SOLUTION OF HEAT-CONDUCTION PROBLEMS IN MULTIZONE BODIES OF NONLINEAR MATERIAL [J].
BIALECKI, R ;
KUHN, G .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1993, 36 (05) :799-&
[10]   SOLVING NONLINEAR STEADY-STATE POTENTIAL PROBLEMS IN INHOMOGENOUS BODIES USING THE BOUNDARY-ELEMENT METHOD [J].
BIALECKI, R ;
NAHLIK, R .
NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 1989, 16 (01) :79-96