Biomineral ultrastructure, elemental constitution and genomic analysis of biomineralization-related proteins in hemichordates

被引:25
作者
Cameron, C. B. [1 ]
Bishop, C. D. [2 ]
机构
[1] Univ Montreal, Dept Sci Biol, Montreal, PQ H3C 3J7, Canada
[2] St Francis Xavier Univ, Dept Biol, Antigonish, NS B2G 2W5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
hemichordate; biomineralization; aragonite; skeletal evolution; AMORPHOUS CALCIUM-CARBONATE; SEA-URCHIN EMBRYO; GENE-EXPRESSION; EVOLUTION; MORPHOGENESIS; ARAGONITE; INSIGHTS; MATRIX; PHASE;
D O I
10.1098/rspb.2012.0335
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Here, we report the discovery and characterization of biominerals in the acorn worms Saccoglossus bromophenolosus and Ptychodera flava galapagos (Phylum: Hemichordata). Using electron microscopy, X-ray microprobe analyses and confocal Raman spectroscopy, we show that hemichordate biominerals are small CaCO3 aragonitic elements restricted to specialized epidermal structures, and in S. bromophenolosus, are apparently secreted by sclerocytes. Investigation of urchin biomineralizing proteins in the translated genome and expressed sequence tag (EST) libraries of Saccoglossus kowalevskii indicates that three members of the urchin MSP-130 family, a carbonic anhydrase and a matrix metaloprotease are present and transcribed during the development of S. kowalevskii. The SM family of proteins is absent from the hemichordate genome. These results increase the number of phyla known to biomineralize and suggest that some of the gene-regulatory 'toolkit', if not mineralized tissue themselves, may have been present in the common ancestor to hemichordates and echinoderms.
引用
收藏
页码:3041 / 3048
页数:8
相关论文
共 40 条
  • [1] Agassiz A., 1873, Mem Am Ac, Vix, P421
  • [2] Calcitic microlenses as part of the photoreceptor system in brittlestars
    Aizenberg, J
    Tkachenko, A
    Weiner, S
    Addadi, L
    Hendler, G
    [J]. NATURE, 2001, 412 (6849) : 819 - 822
  • [3] Patterning the sea urchin embryo: Gene regulatory networks, signaling pathways, and cellular interactions
    Angerer, LM
    Angerer, RC
    [J]. CURRENT TOPICS IN DEVELOPMENTAL BIOLOGY, VOL 53, 2003, 53 : 159 - 198
  • [4] Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth
    Beniash, E
    Aizenberg, J
    Addadi, L
    Weiner, S
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1997, 264 (1380) : 461 - 465
  • [5] INTERCALATION OF SEA-URCHIN PROTEINS IN CALCITE - STUDY OF A CRYSTALLINE COMPOSITE-MATERIAL
    BERMAN, A
    ADDADI, L
    KVICK, A
    LEISEROWITZ, L
    NELSON, M
    WEINER, S
    [J]. SCIENCE, 1990, 250 (4981) : 664 - 667
  • [6] Review - Paleogenomics of echinoderms
    Bottjer, David J.
    Davidson, Eric H.
    Peterson, Kevin J.
    Cameron, R. Andrew
    [J]. SCIENCE, 2006, 314 (5801) : 956 - 960
  • [7] Evolution of the chordate body plan: New insights from phylogenetic analyses of deuterostome phyla
    Cameron, CB
    Garey, JR
    Swalla, BJ
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (09) : 4469 - 4474
  • [8] Molecular phylogeny of hemichordata, with updated status of deep-sea enteropneusts
    Cannon, Johanna T.
    Rychel, Amanda L.
    Eccleston, Heather
    Halanych, Kenneth M.
    Swalla, Billie J.
    [J]. MOLECULAR PHYLOGENETICS AND EVOLUTION, 2009, 52 (01) : 17 - 24
  • [9] Geochemical perspectives on coral mineralization
    Cohen, AL
    McConnaughey, TA
    [J]. BIOMINERALIZATION, 2003, 54 : 151 - 187
  • [10] Phosphate biomineralization in mid-Neoproterozoic protists
    Cohen, Phoebe A.
    Schopf, J. William
    Butterfield, Nicholas J.
    Kudryavtsev, Anatoliy B.
    Macdonald, Francis A.
    [J]. GEOLOGY, 2011, 39 (06) : 539 - 542