Separable determination of integrability and minimality of the Clarke subdifferential mapping

被引:19
作者
Borwein, JM [1 ]
Moors, WB
机构
[1] Simon Fraser Univ, Dept Math & Stat, CECM, Burnaby, BC V5A 1S6, Canada
[2] Univ Waikato, Dept Math, Hamilton, New Zealand
关键词
separable reduction; integrability; D-representability; minimal cusco;
D O I
10.1090/S0002-9939-99-05001-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show that the study of integrability and D-representability of Lipschitz functions defined on arbitrary Banach spaces reduces to the study of these properties on separable Banach spaces.
引用
收藏
页码:215 / 221
页数:7
相关论文
共 9 条
[1]   Essentially smooth Lipschitz functions [J].
Borwein, JM ;
Moors, WB .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 149 (02) :305-351
[2]   Null sets and essentially smooth Lipschitz functions [J].
Borwein, JM ;
Moors, WB .
SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (02) :309-323
[3]  
BORWEIN JM, IN PRESS COMPTE REND
[4]  
BORWEIN JM, 1997, P OPT MIN, V3, P5
[5]  
BORWEIN JM, 1991, P INT C FIXED POINT, P57
[6]   SETS OF HAAR MEASURE ZERO IN ABELIAN POLISH GROUPS [J].
CHRISTENSEN, JP .
ISRAEL JOURNAL OF MATHEMATICS, 1972, 13 (3-4) :255-260
[7]  
CLARKE FH, 1971, OPTIMIZATION NONSMOO
[8]   A CHARACTERIZATION OF MINIMAL SUBDIFFERENTIAL MAPPINGS OF LOCALLY LIPSCHITZ FUNCTIONS [J].
MOORS, WB .
SET-VALUED ANALYSIS, 1995, 3 (02) :129-141