Analyzing longitudinal orthodontic data. Part 2: Nonlinear growth models

被引:4
|
作者
Tu, Yu-Kang [1 ]
Pandis, Nikolaos [1 ]
机构
[1] Natl Taiwan Univ, Grad Inst Epidemiol & Prevent Med, Coll Publ Hlth, Taipei 10764, Taiwan
关键词
D O I
10.1016/j.ajodo.2013.07.006
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
引用
收藏
页码:628 / 631
页数:4
相关论文
共 50 条
  • [41] Negative binomial mixed models for analyzing longitudinal CD4 count data
    Yirga, Ashenafi A.
    Melesse, Sileshi F.
    Mwambi, Henry G.
    Ayele, Dawit G.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [42] FITTING GROWTH CURVE MODELS TO LONGITUDINAL DATA WITH MISSING OBSERVATIONS
    JOHNSON, WD
    GEORGE, VT
    SHAHANE, A
    FUCHS, GJ
    HUMAN BIOLOGY, 1992, 64 (02) : 243 - 253
  • [43] Bayesian analysis of longitudinal data using growth curve models
    Zhang, Zhiyong
    Hamagami, Fumiaki
    Wang, Lijuan
    Nesselroade, John R.
    Grimm, Kevin J.
    INTERNATIONAL JOURNAL OF BEHAVIORAL DEVELOPMENT, 2007, 31 (04) : 374 - 383
  • [44] A two-part mixed-effects model for analyzing longitudinal microbiome compositional data
    Chen, Eric Z.
    Li, Hongzhe
    BIOINFORMATICS, 2016, 32 (17) : 2611 - 2617
  • [45] Confounding by subject and by cluster in hierarchical (multi-level) random-effects models for longitudinal data.
    Localio, A. R.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2007, 165 (11) : S139 - S139
  • [46] Linear Mixed Model for Analyzing Longitudinal Data: A Simulation Study of Children Growth Differences
    Pusponegoro, Novi Hidayat
    Rachmawati, Ro'fah Nur
    Notodiputro, Khairil Anwar
    Sartono, Bagus
    DISCOVERY AND INNOVATION OF COMPUTER SCIENCE TECHNOLOGY IN ARTIFICIAL INTELLIGENCE ERA, 2017, 116 : 284 - 291
  • [47] On analyzing circadian rhythms data using nonlinear mixed models with harmonic terms - Reply
    Wang, YD
    Ke, CL
    Brown, MB
    BIOMETRICS, 2005, 61 (04) : 1120 - 1122
  • [48] Sustainable Education: Analyzing the Determinants of University Student Dropout by Nonlinear Panel Data Models
    Kim, Donggeun
    Kim, Seoyong
    SUSTAINABILITY, 2018, 10 (04)
  • [49] A review of analytical techniques for gait data. Part 2: neural network and wavelet methods
    Chau, T
    GAIT & POSTURE, 2001, 13 (02) : 102 - 120
  • [50] APPLICATION OF NONLINEAR MODELS WITH RANDOM-COEFFICIENTS TO GROWTH DATA
    PALMER, MJ
    PHILLIPS, BF
    SMITH, GT
    BIOMETRICS, 1991, 47 (02) : 623 - 635