Effect of microstructure and surface impurity segregation on the electrical and electrochemical properties of dense Al-substituted Li7La3Zr2O12

被引:176
|
作者
Cheng, Lei [1 ,2 ]
Park, Joong Sun [1 ]
Hou, Huaming [1 ,3 ]
Zorba, Vassilia [1 ]
Chen, Guoying [1 ]
Richardson, Thomas [1 ]
Cabana, Jordi [1 ,4 ]
Russo, Richard [1 ]
Doeff, Marca [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[3] Ocean Univ China, Opt & Optoelect Lab, Qingdao 266100, Peoples R China
[4] Univ Illinois, Dept Chem, Chicago, IL 60607 USA
关键词
IONIC-CONDUCTIVITY; LITHIUM; BATTERY; TEMPERATURE; CONDUCTORS; ALUMINUM;
D O I
10.1039/c3ta13999a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Al-substituted Li7La3Zr2O12 (LLZO) pellets with a grain size of 100-200 mu m and a relative density of 94% were prepared by conventional solid-state processing at a sintering temperature of 1100 degrees C, 130 degrees C lower than previously reported. Morphological features and the presence of impurities were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Femtosecond Laser Induced Breakdown Spectroscopy (LIBS) was used to visualize the distribution of impurities. The results suggest that chemical composition of the powder cover strongly affects morphology and impurity formation, and that particle size control is critical to densification. These properties, in turn, strongly affect total ionic conductivity and interfacial resistance of the sintered pellets.
引用
收藏
页码:172 / 181
页数:10
相关论文
共 50 条
  • [41] Enhanced critical current density of Garnet Li7La3Zr2O12 solid electrolyte by incorporation of LiBr
    Ma, Xiaoning
    Xu, Youlong
    ELECTROCHIMICA ACTA, 2022, 409
  • [42] SPS sintering and characterization of Li7La3Zr2O12 solid electrolytes
    Abdulai, Musah
    Dermenci, Kamil Burak
    Turan, Servet
    MRS ENERGY & SUSTAINABILITY, 2023, 10 (01) : 94 - 99
  • [43] Effect of Al2O3 on Microstructure and Ionic Conductivity of Li7La3Zr2O12 Solid Electrolytes Prepared by Plasma Activated Sintering
    Zhang, Yanhua
    Chen, Fei
    Tu, Rong
    Shen, Qiang
    Zhang, Lianmeng
    ADVANCED CERAMICS AND NOVEL PROCESSING, 2014, 616 : 217 - 222
  • [44] The effect of a Ta, Sr co-doping strategy on physical and electrochemical properties of Li7La3Zr2O12 electrolytes
    Ning, Tianxiang
    Zhang, Yanzhi
    Zhang, Qian
    Shen, Xuefeng
    Luo, Yinyi
    Liu, Taoyong
    Liu, Piao
    Luo, Zhiwei
    Lu, Anxian
    SOLID STATE IONICS, 2022, 379
  • [45] Effect of Cu/Ta-codoping on the microstructure and conductivity of Li7La3Zr2O12 by flash sintering
    Yang, Yue
    Ma, Tianhui
    Zhang, Zheng
    JOURNAL OF MATERIALS SCIENCE, 2023, 58 (48) : 18003 - 18013
  • [46] A different zirconia precursor for Li7La3Zr2O12 synthesis
    Rahmawati, Fitria
    Musyarofah, Bilqies
    Nugrahaningtyas, Khoirina D.
    Prasetyo, Anton
    Suendo, Veinardi
    Haeruddin, Hery
    Handaka, Muhammad F. A.
    Nilasari, Hanida
    Nursukatmo, Hartoto
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 15 : 2725 - 2734
  • [47] The surface behaviour of an Al-Li7La3Zr2O12 solid electrolyte
    Bai, Lixiong
    Xue, Wendong
    Li, Yan
    Liu, Xiaoguang
    Li, Yong
    Sun, Jialin
    CERAMICS INTERNATIONAL, 2017, 43 (17) : 15805 - 15810
  • [48] The origin of conductivity variations in Al-stabilized Li7La3Zr2O12 ceramics
    Wachter-Welzl, A.
    Kirowitz, J.
    Wagner, R.
    Smetaczek, S.
    Brunauer, G. C.
    Bonta, M.
    Rettenwander, D.
    Taibl, S.
    Limbeck, A.
    Amthauer, G.
    Fleig, J.
    SOLID STATE IONICS, 2018, 319 : 203 - 208
  • [49] Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method
    Jin, Ying
    McGinn, Paull
    JOURNAL OF POWER SOURCES, 2011, 196 (20) : 8683 - 8687
  • [50] Misconception in the Analysis of Tetragonal Li7La3Zr2O12 Garnet
    Jayaraman, Vinoth Kumar
    Porob, Digamber G.
    Prakash, Annigere S.
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (22) : 11442 - 11447