Variational approach to second-order impulsive dynamic equations on time scales

被引:3
|
作者
Otero-Espinar, Victoria [1 ]
Pernas-Castano, Tania [1 ,2 ]
机构
[1] Univ Santiago de Compostela, Dept Anal Matemat, Santiago De Compostela 15782, Galicia, Spain
[2] UCM, UC3M, UAM, Inst Ciencias Matemat,CSIC, Madrid 28049, Spain
来源
BOUNDARY VALUE PROBLEMS | 2013年
关键词
impulsive dynamic equations; second-order boundary value problem; variational techniques; critical point theory; time scales; MULTIPLE POSITIVE SOLUTIONS; BOUNDARY-VALUE-PROBLEMS; DEPENDENCE; EXISTENCE; SYSTEMS;
D O I
10.1186/1687-2770-2013-119
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to employ variational techniques and critical point theory to prove some conditions for the existence of solutions to a nonlinear impulsive dynamic equation with homogeneous Dirichlet boundary conditions. Also, we are interested in the solutions of the impulsive nonlinear problem with linear derivative dependence satisfying an impulsive condition.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Existence results for second order boundary value problem of impulsive dynamic equations on time scales
    Benchohra, M
    Ntouyas, SK
    Ouahab, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 296 (01) : 65 - 73
  • [42] Positive solutions of second-order half-linear dynamic equations on time scales
    Sun, HR
    Li, WT
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 158 (02) : 331 - 344
  • [43] Oscillation Theorems for Second-Order Nonlinear Neutral Delay Dynamic Equations on Time Scales
    Samir H.SAKER
    Donal O’REGAN
    Ravi P.AGARWAL
    ActaMathematicaSinica(EnglishSeries), 2008, 24 (09) : 5 - 5
  • [44] Oscillation theorems for second-order nonlinear neutral delay dynamic equations on time scales
    Saker, Samir H.
    O'Regan, Donal
    Agarwal, Ravi P.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (09) : 1409 - 1432
  • [45] Oscillation Criteria for Second-Order Quasilinear Neutral Delay Dynamic Equations on Time Scales
    Sun, Yibing
    Han, Zhenlai
    Li, Tongxing
    Zhang, Guangrong
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [46] Hyers-Ulam Stability of Second-Order Linear Dynamic Equations on Time Scales
    Anderson, Douglas R.
    Onitsuka, Masakazu
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (05) : 1809 - 1826
  • [47] Oscillation theorems for second-order nonlinear neutral delay dynamic equations on time scales
    Samir H. Saker
    Donal O’regan
    Ravi P. Agarwal
    Acta Mathematica Sinica, English Series, 2008, 24 : 1409 - 1432
  • [48] Oscillation Criteria of Second-order Nonlinear Neutral delay Dynamic Equations on Time Scales
    Li, Tongxing
    Han, Zhenlai
    PROCEEDINGS OF THE 6TH CONFERENCE OF BIOMATHEMATICS, VOLS I AND II: ADVANCES ON BIOMATHEMATICS, 2008, : 563 - 567
  • [49] Existence and multiplicity of solutions for some second-order systems on time scales with impulsive effects
    Zhou, Jianwen
    Wang, Yanning
    Li, Yongkun
    BOUNDARY VALUE PROBLEMS, 2012,
  • [50] Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales
    Saker, Samir H.
    Agarwal, Ravi P.
    O'Regan, Donal
    APPLICABLE ANALYSIS, 2007, 86 (01) : 1 - 17