Variational approach to second-order impulsive dynamic equations on time scales

被引:3
|
作者
Otero-Espinar, Victoria [1 ]
Pernas-Castano, Tania [1 ,2 ]
机构
[1] Univ Santiago de Compostela, Dept Anal Matemat, Santiago De Compostela 15782, Galicia, Spain
[2] UCM, UC3M, UAM, Inst Ciencias Matemat,CSIC, Madrid 28049, Spain
来源
BOUNDARY VALUE PROBLEMS | 2013年
关键词
impulsive dynamic equations; second-order boundary value problem; variational techniques; critical point theory; time scales; MULTIPLE POSITIVE SOLUTIONS; BOUNDARY-VALUE-PROBLEMS; DEPENDENCE; EXISTENCE; SYSTEMS;
D O I
10.1186/1687-2770-2013-119
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to employ variational techniques and critical point theory to prove some conditions for the existence of solutions to a nonlinear impulsive dynamic equation with homogeneous Dirichlet boundary conditions. Also, we are interested in the solutions of the impulsive nonlinear problem with linear derivative dependence satisfying an impulsive condition.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Existence of Positive Solutions for Second-Order Impulsive Boundary Value Problems on Time Scales
    İsmail Yaslan
    Mediterranean Journal of Mathematics, 2016, 13 : 1613 - 1624
  • [22] EXISTENCE OF NONOSCILLATORY SOLUTIONS TO SECOND-ORDER NONLINEAR NEUTRAL DYNAMIC EQUATIONS ON TIME SCALES
    Gao, Jin
    Wang, Qiru
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (05) : 1521 - 1535
  • [23] Necessary and sufficient conditions for oscillation of second-order dynamic equations on time scales
    Zhou, Yong
    Ahmad, Bashir
    Alsaedi, Ahmed
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (13) : 4488 - 4497
  • [24] OSCILLATION THEOREMS FOR SECOND-ORDER NEUTRAL FUNCTIONAL DYNAMIC EQUATIONS ON TIME SCALES
    Gao, Cunchen
    Li, Tongxing
    Tang, Shuhong
    Thandapani, Ethiraju
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
  • [25] Variational Approaches to Kirchhoff-Type Second-Order Impulsive Differential Equations on the Half-Line
    Caristi, Giuseppe
    Heidarkhani, Shapour
    Salari, Amjad
    RESULTS IN MATHEMATICS, 2018, 73 (01)
  • [26] Oscillation Criteria of Second-Order Nonlinear Delay Dynamic Equations on Time Scales
    Han, Zhenlai
    Sun, Shurong
    Zhang, Chenghui
    Li, Tongxing
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 5762 - 5766
  • [27] Oscillation of second-order delay and neutral delay dynamic equations on time scales
    Saker, S. H.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2007, 16 (02): : 345 - 359
  • [28] Oscillation criteria for the second-order neutral advanced dynamic equations on time scales
    Sui, Ying
    APPLIED MATHEMATICS LETTERS, 2025, 166
  • [29] FORCED OSCILLATION OF SECOND-ORDER NONLINEAR FUNCTIONAL DYNAMIC EQUATIONS ON TIME SCALES
    Agwa, H. A.
    Khodier, Ahmed M. M.
    Atteya, Heba M.
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2014, 6 (01): : 33 - 57
  • [30] Hyers—Ulam Stability of Second-Order Linear Dynamic Equations on Time Scales
    Douglas R. Anderson
    Masakazu Onitsuka
    Acta Mathematica Scientia, 2021, 41 : 1809 - 1826