Characterizing gravitational wave stochastic background anisotropy with pulsar timing arrays

被引:113
|
作者
Mingarelli, C. M. F. [1 ]
Sidery, T. [1 ]
Mandel, I. [1 ]
Vecchio, A. [1 ]
机构
[1] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England
来源
PHYSICAL REVIEW D | 2013年 / 88卷 / 06期
关键词
BLACK-HOLE BINARIES; COALESCENCE RATE; LIMITS; SYSTEMS; RADIATION; MODELS;
D O I
10.1103/PhysRevD.88.062005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Detecting a stochastic gravitational wave background, particularly radiation from individually unresolvable supermassive black hole binary systems, is one of the primary targets for pulsar timing arrays. Increasingly more stringent upper limits are being set on these signals under the assumption that the background radiation is isotropic. However, some level of anisotropy may be present and the characterization of the gravitational wave energy density at different angular scales carries important information. We show that the standard analysis for isotropic backgrounds can be generalized in a conceptually straightforward way to the case of generic anisotropic background radiation by decomposing the angular distribution of the gravitational wave energy density on the sky into multipole moments. We introduce the concept of generalized overlap reduction functions which characterize the effect of the anisotropy multipoles on the correlation of the timing residuals from the pulsars timed by a pulsar timing array. In a search for a signal characterized by a generic anisotropy, the generalized overlap reduction functions play the role of the so-called Hellings and Downs curve used for isotropic radiation. We compute the generalized overlap reduction functions for a generic level of anisotropy and pulsar timing array configuration. We also provide an order of magnitude estimate of the level of anisotropy that can be expected in the background generated by supermassive black hole binary systems.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] The nightmare scenario: measuring the stochastic gravitational wave background from stalling massive black hole binaries with pulsar timing arrays
    Dvorkin, Irina
    Barausse, Enrico
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 470 (04) : 4547 - 4556
  • [32] Searching for bispectrum of stochastic gravitational waves with pulsar timing arrays
    Tsuneto, Makoto
    Ito, Asuka
    Noumi, Toshifumi
    Soda, Jiro
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (03):
  • [33] Full analytic expression of overlap reduction function for gravitational wave background with pulsar timing arrays
    Hu, Yu
    Wang, Pan-Pan
    Tan, Yu-Jie
    Shao, Cheng-Gang
    PHYSICAL REVIEW D, 2022, 106 (02)
  • [34] Searching for a generic gravitational wave background via Bayesian nonparametric analysis with pulsar timing arrays
    Deng, Xihao
    PHYSICAL REVIEW D, 2014, 90 (10):
  • [35] Can Supercooled Phase Transitions Explain the Gravitational Wave Background Observed by Pulsar Timing Arrays?
    Athron, Peter
    Fowlie, Andrew
    Lu, Chih-Ting
    Morris, Lachlan
    Wu, Lei
    Wu, Yongcheng
    Xu, Zhongxiu
    PHYSICAL REVIEW LETTERS, 2024, 132 (22)
  • [36] Observation of a polarized stochastic gravitational-wave background in pulsar-timing-array experiments
    Chu, Yu-Kuang
    Liu, Guo-Chin
    Ng, Kin-Wang
    PHYSICAL REVIEW D, 2021, 104 (12)
  • [37] Inflationary interpretation of the stochastic gravitational wave background signal detected by pulsar timing array experiments
    Vagnozzi, Sunny
    JOURNAL OF HIGH ENERGY ASTROPHYSICS, 2023, 39 : 81 - 98
  • [38] Comparing Recent Pulsar Timing Array Results on the Nanohertz Stochastic Gravitational-wave Background
    Agazie, G.
    Antoniadis, J.
    Anumarlapudi, A.
    Archibald, A. M.
    Arumugam, P.
    Arumugam, S.
    Arzoumanian, Z.
    Askew, J.
    Babak, S.
    Bagchi, M.
    Bailes, M.
    Nielsen, A. -S. Bak
    Baker, P. T.
    Bassa, C. G.
    Bathula, A.
    Becsy, B.
    Berthereau, A.
    Bhat, N. D. R.
    Blecha, L.
    Bonetti, M.
    Bortolas, E.
    Brazier, A.
    Brook, P. R.
    Burgay, M.
    Burke-Spolaor, S.
    Burnette, R.
    Caballero, R. N.
    Cameron, A.
    Case, R.
    Chalumeau, A.
    Champion, D. J.
    Chanlaridis, S.
    Charisi, M.
    Chatterjee, S.
    Chatziioannou, K.
    Cheeseboro, B. D.
    Chen, S.
    Chen, Z. -C.
    Cognard, I.
    Cohen, T.
    Coles, W. A.
    Cordes, J. M.
    Cornish, N. J.
    Crawford, F.
    Cromartie, H. T.
    Crowter, K.
    Curylo, M.
    Cutler, C. J.
    Dai, S.
    Dandapat, S.
    ASTROPHYSICAL JOURNAL, 2024, 966 (01):
  • [39] AN EFFICIENT APPROXIMATION TO THE LIKELIHOOD FOR GRAVITATIONAL WAVE STOCHASTIC BACKGROUND DETECTION USING PULSAR TIMING DATA
    Ellis, J. A.
    Siemens, X.
    van Haasteren, R.
    ASTROPHYSICAL JOURNAL, 2013, 769 (01):
  • [40] Principles of Gravitational-Wave Detection with Pulsar Timing Arrays
    Maiorano, Michele
    De Paolis, Francesco
    Nucita, Achille A.
    SYMMETRY-BASEL, 2021, 13 (12):