Positive radial solutions for some quasilinear elliptic systems in exterior domains

被引:0
作者
do O, JM [1 ]
Lorca, S
Sánchez, J
Ubilla, P
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58059900 Joao Pessoa, Paraiba, Brazil
[2] Univ Tarapaca, Dept Matemat, Arica, Chile
[3] Univ Santiago, Santiago, Chile
关键词
elliptic systems; exterior domains; positive radial solutions; p-Laplacian;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use fixed-point theorem of cone expansion/compression type to prove the existence of positive radial solutions for the following class of quasilinear elliptic systems in exterior domains -Delta(p)u = k(1)(vertical bar x vertical bar)f(u,v), for vertical bar x vertical bar > 1 and x is an element of R-N, -Delta(p)u = k(2)(vertical bar x vertical bar)g(u, v), for vertical bar x vertical bar > 1 and x is an element of R-N, u(x) = v(x) = 0, for vertical bar x vertical bar = 1, u(x), v(x) -> 0 as vertical bar x vertical bar -> +infinity where 1 < p < N and Delta(p)u = div(vertical bar del vertical bar u vertical bar(p-2) del u) is the p-Laplacian operator. We consider nonlinearities that are either superlinear or sublinear.
引用
收藏
页码:571 / 581
页数:11
相关论文
共 17 条
  • [1] Eigenvalues and the one-dimensional p-Laplacian
    Agarwal, RP
    Lü, HS
    O'Regan, D
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 266 (02) : 383 - 400
  • [2] Multiplicity results for some nonlinear elliptic equations
    Ambrosetti, A
    Azorero, JG
    Peral, I
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 137 (01) : 219 - 242
  • [3] Ambrosetti A., 2000, REND MAT 7, V20, P167
  • [4] [Anonymous], 1997, QUASILINEAR ELLIPTIC, DOI DOI 10.1515/9783110804775
  • [5] [Anonymous], [No title captured]
  • [6] Chhetri M, 2003, DISCRETE CONT DYN S, V9, P1063
  • [7] De Figueiredo DG, 1998, NONLINEAR FUNCTIONAL ANALYSIS AND APPLICATIONS TO DIFFERENTIAL EQUATIONS, PROCEEDINGS OF THE SECOND SCHOOL, P122
  • [8] DEFIGUEIREDO DG, 1982, LECT NOTES MATH, V957, P34
  • [9] Deimling K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
  • [10] Local superlinearity for elliptic systems involving parameters
    do O, JM
    Lorca, S
    Ubilla, P
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 211 (01) : 1 - 19