Nonlinear localized modes in PT-symmetric Rosen-Morse potential wells

被引:98
|
作者
Midya, Bikashkali [1 ]
Roychoudhury, Rajkumar [1 ]
机构
[1] Indian Stat Inst, Phys & Appl Math Unit, Kolkata 700108, India
来源
PHYSICAL REVIEW A | 2013年 / 87卷 / 04期
关键词
SOLITONS; STABILITY; SPECTRA;
D O I
10.1103/PhysRevA.87.045803
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report the existence and properties of localized modes described by a nonlinear Schrodinger equation with a complex PT-symmetric Rosen-Morse potential well. Exact analytical expressions of the localized modes are found in both one-dimensional and two-dimensional geometry with self-focusing and self-defocusing Kerr nonlinearity. Linear stability analysis reveals that these localized modes are unstable for all real values of the potential parameters, although the corresponding linear Schrodinger eigenvalue problem possesses unbroken PT symmetry. This result has been verified by the direct numerical simulation of the governing equation. The transverse power-flow density associated with these localized modes has also been examined. DOI: 10.1103/PhysRevA.87.045803
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Vortex ring beams in nonlinear PT-symmetric systems
    Mejia-Cortes, Cristian
    Munoz-Munoz, Jesus
    Molina, Mario i.
    OPTICS LETTERS, 2024, 49 (08) : 1923 - 1926
  • [32] OPTICAL MODES IN PT-SYMMETRIC DOUBLE-CHANNEL WAVEGUIDES
    Chen, Li
    Li, Rujiang
    Yang, Na
    Chen, Da
    Li, Lu
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2012, 13 (01): : 46 - 54
  • [33] Quantum description of a PT-symmetric nonlinear directional coupler
    Perinova, V
    Luks, A.
    Krepelka, J.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2019, 36 (04) : 855 - 861
  • [34] NONLINEAR PT-SYMMETRIC MODELS BEARING EXACT SOLUTIONS
    Xu, H.
    Kevrekidis, P. G.
    Zhou, Q.
    Frantzeskakis, D. J.
    Achilleos, V.
    Carretero-Gonzalez, R.
    ROMANIAN JOURNAL OF PHYSICS, 2014, 59 (3-4): : 185 - 194
  • [35] Nonlinear switching and solitons in PT-symmetric photonic systems
    Suchkov, Sergey V.
    Sukhorukov, Andrey A.
    Huang, Jiahao
    Dmitriev, Sergey V.
    Lee, Chaohong
    Kivshar, Yuri S.
    LASER & PHOTONICS REVIEWS, 2016, 10 (02) : 177 - 213
  • [36] Resonance reflection by the one-dimensional Rosen-Morse potential well in the Gross-Pitaevskii problem
    Ishkhanyan, H. A.
    Krainov, V. P.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2009, 109 (04) : 585 - 589
  • [37] Spectra of PT-symmetric fractional Schrodinger equations with multiple quantum wells
    Solaimani, M.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2020, 19 (04) : 1416 - 1425
  • [38] The complete solution of the Schrödinger equation with the Rosen-Morse type potential via the Nikiforov-Uvarov method
    Gordillo-Nunez, Guillermo
    Alvarez-Nodarse, Renato
    Quintero, Niurka R.
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 458
  • [39] Optical solitons in PT-symmetric nonlinear couplers with gain and loss
    Alexeeva, N. V.
    Barashenkov, I. V.
    Sukhorukov, Andrey A.
    Kivshar, Yuri S.
    PHYSICAL REVIEW A, 2012, 85 (06):
  • [40] PT-Symmetric Dimer in a Generalized Model of Coupled Nonlinear Oscillators
    Cuevas-Maraver, Jesus
    Khare, Avinash
    Kevrekidis, Panayotis G.
    Xu, Haitao
    Saxena, Avadh
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (11) : 3960 - 3985