[1, 1, t]-Colorings of Complete Graphs

被引:0
作者
Kemnitz, Arnfried [1 ]
Marangio, Massimiliano [1 ]
Tuza, Zsolt [2 ,3 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, D-38106 Braunschweig, Germany
[2] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1053 Budapest, Hungary
[3] Univ Pannonia, Dept Comp Sci & Syst Technol, H-8200 Veszprem, Hungary
基金
匈牙利科学研究基金会;
关键词
r; s; t]-Colorings; t]-Chromatic number; Generalized colorings; Complete graphs;
D O I
10.1007/s00373-012-1153-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given non-negative integers and an -coloring of a graph is a mapping from to the color set such that for every two adjacent vertices for every two adjacent edges and for all pairs of incident vertices and edges, respectively. The -chromatic number of is defined to be the minimum such that admits an -coloring. In this note we examine for complete graphs We prove, among others, that is equal to whenever but is strictly larger if is even and sufficiently large with respect to Moreover, as and we asymptotically have if and only if.
引用
收藏
页码:1041 / 1050
页数:10
相关论文
共 8 条
[1]   [r, s, t]-coloring of trees and bipartite graphs [J].
Dekar, Lyes ;
Effantin, Brice ;
Kheddouci, Hamamache .
DISCRETE MATHEMATICS, 2010, 310 (02) :260-269
[2]  
Kemnitz A., 2011, C NUMERANTIUM, V208, P99
[3]  
Kemnitz A., 2007, C NUMERANTIUM, V185, P65
[4]   [r, s, t]-chromatic numbers and hereditary properties of graphs [J].
Kemnitz, Arnfried ;
Marangio, Massimiliano ;
Mihok, Peter .
DISCRETE MATHEMATICS, 2007, 307 (7-8) :916-922
[5]   [r, s, t]-Colorings of graphs [J].
Kemnitz, Arnfried ;
Marangio, Massimiliano .
DISCRETE MATHEMATICS, 2007, 307 (02) :199-207
[6]  
Lehmann J., 2006, THESIS TU BRAUNSCHWE
[7]  
Villà MS, 2007, OPUSC MATH, V27, P131
[8]  
VILLA MS, 2005, THESIS TU BERGAKADEM