Effect of Sn addition on the mechanical properties and bio-corrosion behavior of cytocompatible Mg-4Zn based alloys

被引:83
作者
Jiang, Weiyan [1 ]
Wang, Jingfeng [1 ]
Zhao, Weikang [2 ]
Liu, Qingshan [1 ]
Jiang, Dianming [2 ]
Guo, Shengfeng [3 ]
机构
[1] Chongqing Univ, Coll Mat Sci & Engn, Natl Engn Res Ctr Magnesium Alloys, Chongqing 400044, Peoples R China
[2] Chongqing Med Univ, Affiliated Hosp 1, Dept Orthoped, Chongqing 400016, Peoples R China
[3] Southwest Univ, Fac Mat & Energy, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnesium alloy; Polarization; Immersion; Bio-corrosion behavior; Cytocompatibility; IN-VIVO CORROSION; MAGNESIUM ALLOY; VITRO DEGRADATION; MG; ZN; MICROSTRUCTURE; MN; CYTOTOXICITY; RESISTANCE; PHASES;
D O I
10.1016/j.jma.2019.02.002
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The mechanical properties and bio-corrosion behaviors of as-extruded Mg-4Zn alloys after Sn addition were investigated, systematically. A small amount of Sn addition to Mg-4Zn alloy slightly improved the mechanical properties for solid solution strengthening, and significantly controlled the bio-corrosion rates. Sn participating in the outer layer film formation as SnO/SnO2 resisted the bio-corrosion proceeding. Especially, Mg-4Zn-1.5Sn alloy, with a weight loss rate of 0.45 mm/y and hydrogen evolution rate of 0.099 mL/cm(2)/day, showed cytotoxicity grade of 0 to MC3T3-E1 cells. The perfect alliance of cytocompatibility, suitable mechanical properties and low bio-corrosion rate demonstrates that this Mg-4Zn-1.5Sn alloy is a promising biodegradable magnesium alloy for orthopedic implants. (C) 2019 Published by Elsevier B.V. on behalf of Chongqing University.
引用
收藏
页码:15 / 26
页数:12
相关论文
共 54 条
[1]  
[Anonymous], 1999, ANN BOOK ASTM STAND, V03.01
[2]  
[Anonymous], 2004, ASTM G31-72: standard Practice for Laboratory Immersion Corrosion Testing of Metals
[3]  
Cao C.N., 2004, Principles of Corrosion Electrochemistry
[4]   Comparative in vitro Study on Pure Metals (Fe, Mn, Mg, Zn and W) as Biodegradable Metals [J].
Cheng, J. ;
Liu, B. ;
Wu, Y. H. ;
Zheng, Y. F. .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2013, 29 (07) :619-627
[5]   Microstructure of localized corrosion front on Mg alloys and the relationship with hydrogen evolution [J].
Chu, Peng-Wei ;
Le Mire, Etienne ;
Marquis, Emmanuelle A. .
CORROSION SCIENCE, 2017, 128 :253-264
[6]   Effects of trace Ca/Sn addition on corrosion behaviors of biodegradable Mg-4Zn-0.2Mn alloy [J].
Du, Wenbo ;
Liu, Ke ;
Ma, Ke ;
Wang, Zhaohui ;
Li, Shubo .
JOURNAL OF MAGNESIUM AND ALLOYS, 2018, 6 (01) :1-14
[7]  
Erinc M, 2009, MAGNESIUM TECHNOLOGY, P209
[8]   Fundamentals and advances in magnesium alloy corrosion [J].
Esmaily, M. ;
Svensson, J. E. ;
Fajardo, S. ;
Birbilis, N. ;
Frankel, G. S. ;
Virtanen, S. ;
Arrabal, R. ;
Thomas, S. ;
Johansson, L. G. .
PROGRESS IN MATERIALS SCIENCE, 2017, 89 :92-193
[9]   In vitro corrosion and biocompatibility of binary magnesium alloys [J].
Gu, Xuenan ;
Zheng, Yufeng ;
Cheng, Yan ;
Zhong, Shengping ;
Xi, Tingfei .
BIOMATERIALS, 2009, 30 (04) :484-498
[10]   Influences of metallurgical factors on the corrosion behaviour of extruded binary Mg-Sn alloys [J].
Ha, Heon-Young ;
Kang, Jun-Yun ;
Kim, Seong Gyeong ;
Kim, Beomcheol ;
Park, Sung Soo ;
Yim, Chang Dong ;
You, Bong Sun .
CORROSION SCIENCE, 2014, 82 :369-379