QAlayout: Question Answering Layout Based on Multimodal Attention for Visual Question Answering on Corporate Document

被引:2
作者
Mahamoud, Ibrahim Souleiman [1 ,2 ]
Coustaty, Mickael [1 ]
Joseph, Aurelie [2 ]
d'Andecy, Vincent Poulain [2 ]
Ogier, Jean-Marc [1 ]
机构
[1] La Rochelle Univ, L3i Ave Michel Crepeau, F-17042 La Rochelle, France
[2] Yooz, 1 Rue Fleming, F-17000 La Rochelle, France
来源
DOCUMENT ANALYSIS SYSTEMS, DAS 2022 | 2022年 / 13237卷
关键词
Visual question answering; Multimodality; Attention mechanism;
D O I
10.1007/978-3-031-06555-2_44
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The extraction of information from corporate documents is increasing in the research field both for its economic aspect and a scientific challenge. To extract this information the use of textual and visual content becomes unavoidable to understand the inherent information of the image. The information to be extracted is most often fixed beforehand (i.e. classification of words by date, total amount, etc.). The information to be extracted is evolving, so we would not like to be restricted to predefine word classes. We would like to question a document such as "which is the address of invoicing?" as we can have several addresses in an invoice. We formulate our request as a question and our model will try to answer. Our model got the result 77.65% on the Docvqa dataset while drastically reducing the number of model parameters to allow us to use it in an industrial context and we use an attention model using several modalities that help us in the interpertation of the results obtained. Our other contribution in this paper is a new dataset for Visual Question answering on corporate document of invoices from RVL-CDIP [8]. The public data on corporate documents are less present in the state-of-the-art, this contribution allow us to test our models to the invoice data with the VQA methods.
引用
收藏
页码:659 / 673
页数:15
相关论文
共 50 条
  • [21] Visual Question Answering
    Nada, Ahmed
    Chen, Min
    2024 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC, 2024, : 6 - 10
  • [22] Question Modifiers in Visual Question Answering
    Britton, William
    Sarkhel, Somdeb
    Venugopal, Deepak
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 1472 - 1479
  • [23] Erasing-based Attention Learning for Visual Question Answering
    Liu, Fei
    Liu, Jing
    Hong, Richang
    Lu, Hanqing
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 1175 - 1183
  • [24] ICDAR 2021 Competition on Document Visual Question Answering
    Tito, Ruben
    Mathew, Minesh
    Jawahar, C., V
    Valveny, Ernest
    Karatzas, Dimosthenis
    DOCUMENT ANALYSIS AND RECOGNITION, ICDAR 2021, PT IV, 2021, 12824 : 635 - 649
  • [25] Co-Attention Network With Question Type for Visual Question Answering
    Yang, Chao
    Jiang, Mengqi
    Jiang, Bin
    Zhou, Weixin
    Li, Keqin
    IEEE ACCESS, 2019, 7 : 40771 - 40781
  • [26] Local relation network with multilevel attention for visual question answering
    Sun, Bo
    Yao, Zeng
    Zhang, Yinghui
    Yu, Lejun
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2020, 73
  • [27] Deep Modular Bilinear Attention Network for Visual Question Answering
    Yan, Feng
    Silamu, Wushouer
    Li, Yanbing
    SENSORS, 2022, 22 (03)
  • [28] Multi-view Attention Networks for Visual Question Answering
    Li, Min
    Bai, Zongwen
    Deng, Jie
    2024 6TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING, ICNLP 2024, 2024, : 788 - 794
  • [29] ADAPTIVE ATTENTION FUSION NETWORK FOR VISUAL QUESTION ANSWERING
    Gu, Geonmo
    Kim, Seong Tae
    Ro, Yong Man
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2017, : 997 - 1002
  • [30] Triple attention network for sentimental visual question answering
    Ruwa, Nelson
    Mao, Qirong
    Song, Heping
    Jia, Hongjie
    Dong, Ming
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2019, 189