Synthesis, growth mechanism, and photocatalytic activity of Zinc oxide nanostructures: porous microparticles versus nonporous nanoparticles

被引:42
作者
Barhoum, Ahmed [1 ,2 ,3 ]
Melcher, Johannes [2 ]
Van Assche, Guy [1 ]
Rahier, Hubert [1 ]
Bechelany, Mikhael [4 ]
Fleisch, Manuel [2 ]
Bahnemann, Detlef [2 ,5 ]
机构
[1] Vrije Univ Brussel, Dept Mat & Chem, Fac Engn, Pleinlaan 2, B-1050 Brussels, Belgium
[2] Leibniz Univ Hannover, Inst Tech Chem, Photocatalysis & Nanotechnol Res Unit, Callinstr 3, D-30167 Hannover, Germany
[3] Helwan Univ, Dept Chem, Fac Sci, Cairo 11795, Egypt
[4] UMR 5635 CNRS ENSCM Univ, Inst Europeen Membranes, Pl Eugene Bataillon, F-34095 Montpellier 5, France
[5] St Petersburg State Univ, Dept Photon, Lab Nanocomposite Mat, Fac Phys, Ulianovskaia Str 3, St Petersburg 198504, Russia
关键词
ZNO NANOCRYSTALS; THERMAL-DECOMPOSITION; CDSE NANOCRYSTALS; FACILE SYNTHESIS; CARBONATE; MORPHOLOGY; TIO2; NUCLEATION; SHAPE; SIZE;
D O I
10.1007/s10853-016-0567-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A simple facile method, i.e., thermal decarbonation of ZnCO3 hydroxides, was used to prepare a series of pure ZnO photocatalysts with controlled crystallite sizes, particle sizes, and morphologies. The ZnCO3 precursor was synthesized by direct wet carbonation in the presence of growth-control additives, i.e., organic solvents, surfactants, and low molecular weight polymers. The thermal decarbonation allows for producing ZnO photocatalysts with sizes and shapes varying from 80 +/- 20 nm nonporous rhombohedral nanoparticles to 5 +/- 0.5 A mu m porous particles, for a constant crystallite size of 64 +/- 3 nm. The porous ZnO particles (5 +/- 0.5 A mu m) exhibit two times larger photocatalytic activity for methanol oxidation than the nonporous ZnO nanoparticles (similar to 180 +/- 30 nm). The reasons for the higher photocatalytic activity are further investigated in this work. A possible mechanism for the formation of ZnCO3 hydroxides and their transformation into porous microsized ZnO particles and nonporous nanoparticles are carefully discussed.
引用
收藏
页码:2746 / 2762
页数:17
相关论文
共 65 条
[11]   QUANTITATIVE-ANALYSIS IN DIFFUSE-REFLECTANCE SPECTROMETRY - A MODIFIED KUBELKA-MUNK EQUATION [J].
CHRISTY, AA ;
KVALHEIM, OM ;
VELAPOLDI, RA .
VIBRATIONAL SPECTROSCOPY, 1995, 9 (01) :19-27
[12]   Effect of particle size on the photocatalytic activity of nanoparticulate zinc oxide [J].
Dodd, A. C. ;
McKinley, A. J. ;
Saunders, M. ;
Tsuzuki, T. .
JOURNAL OF NANOPARTICLE RESEARCH, 2006, 8 (01) :43-51
[13]   KINETIC ASPECTS OF THE THERMAL-DECOMPOSITION OF ZINC CARBONATE [J].
DOLLIMORE, D ;
FRANCE, JA ;
KRUPAY, BW ;
WHITEHEAD, R .
THERMOCHIMICA ACTA, 1980, 36 (03) :343-349
[14]   Orientable pore-size-distribution of ZnO nanostructures and their superior photocatalytic activity [J].
Duan, Xiaowei ;
Wang, Guozhong ;
Wang, Hongqiang ;
Wang, Yongqiang ;
Shen, Chen ;
Cai, Weiping .
CRYSTENGCOMM, 2010, 12 (10) :2821-2825
[15]   Effects of cationic surfactant during the precipitation of calcium carbonate nano-particles on their size, morphology, and other characteristics [J].
El-Sheikh, S. M. ;
El-Sherbiny, S. ;
Barhoum, A. ;
Deng, Y. .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2013, 422 :44-49
[16]   Preparation of superhydrophobic nanocalcite crystals using Box-Behnken design [J].
El-Sheikh, Said M. ;
Barhoum, Ahmed ;
El-Sherbiny, Samya ;
Morsy, Fatma ;
El-Midany, Ayman Abdel-Hamid ;
Rahier, Hubert .
ARABIAN JOURNAL OF CHEMISTRY, 2019, 12 (07) :1479-1486
[17]   Self-Cleaning Properties, Mechanical Stability, and Adhesion Strength of Transparent Photocatalytic TiO2-ZnO Coatings on Polycarbonate [J].
Fateh, Razan ;
Dillert, Ralf ;
Bahnemann, Detlef .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (04) :2270-2278
[18]   Stable Prenucleation Calcium Carbonate Clusters [J].
Gebauer, Denis ;
Voelkel, Antje ;
Coelfen, Helmut .
SCIENCE, 2008, 322 (5909) :1819-1822
[19]   LIGHT-INDUCED REDOX REACTIONS IN NANOCRYSTALLINE SYSTEMS [J].
HAGFELDT, A ;
GRATZEL, M .
CHEMICAL REVIEWS, 1995, 95 (01) :49-68
[20]   The Scherrer equation versus the 'Debye-Scherrer equation' [J].
Holzwarth, Uwe ;
Gibson, Neil .
NATURE NANOTECHNOLOGY, 2011, 6 (09) :534-534