On Bohr's theorem for general Dirichlet series

被引:9
作者
Schoolmann, I. [1 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Carl von Ossietzky Str 9-11, D-26129 Oldenburg, Germany
关键词
convergence abscissas; Dirichlet series; polynomials; typical means; CONVERGENCE; SPACES;
D O I
10.1002/mana.201800542
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present quantitative versions of Bohr's theorem on general Dirichlet series D = Sigma a(n)e(-lambda)(ns) assuming different assumptions on the frequency lambda = (lambda(n)), including the conditions introduced by Bohr and Landau. Therefore, using the summation method by typical (first) means invented by M. Riesz, without any condition on lambda, we give upper bounds for the norm of the partial sum operator S-N(D) := Sigma(N)(n=1) a(n)(D)e(-lambda ns) of length N on the space D-infinity(ext)(lambda) of all somewhere convergent lambda-Dirichlet series, which allow a holomorphic and bounded extension to the open right half plane [Re > 0]. As a consequence for some classes of lambda's we obtain a Montel theorem in D-infinity(lambda); the space of all D is an element of D-infinity(ext) (lambda) which converge on [Re > 0]. Moreover, following the ideas of Neder we give a construction of frequencies lambda for which D-infinity(lambda) fails to be complete.
引用
收藏
页码:1591 / 1612
页数:22
相关论文
共 20 条
[1]  
[Anonymous], 1954, Almost Periodic Functions
[2]   The Bohr inequality for ordinary Dirichlet series [J].
Balasubramanian, R. ;
Calado, B. ;
Queffelec, H. .
STUDIA MATHEMATICA, 2006, 175 (03) :285-304
[3]   Hardy spaces of Dirichlet series and their composition operators [J].
Bayart, F .
MONATSHEFTE FUR MATHEMATIK, 2002, 136 (03) :203-236
[4]  
Bohr H, 1913, J REINE ANGEW MATH, V143, P203
[6]  
Bohr H., 1913, Rend. Circ. Mat. Palermo, V37, P1
[7]  
Bohr H., 1951, MAT TIDSSKR B, P1
[8]   Banach spaces of general Dirichlet series [J].
Choi, Yun Sung ;
Kim, Un Young ;
Maestre, Manuel .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 465 (02) :839-856
[9]  
Defant A., 2019, NEW MATH MONOGR S
[10]   Variants of a theorem of Helson on general Dirichlet series [J].
Defant, Andreas ;
Schoolmann, Ingo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (05)