Finite p-groups All of Whose Minimal Nonabelian Subgroups are Nonmetacyclic of Order p3

被引:6
作者
Zhang, Qin Hai [1 ]
机构
[1] Shanxi Normal Univ, Dept Math, Linfen 041004, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite p-groups; a minimal nonabelian subgroup; the Hughes subgroup; p-groups of maximal class;
D O I
10.1007/s10114-019-7308-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Assume p is an odd prime. We investigate finite p-groups all of whose minimal nonabelian subgroups are of order p(3). Let P1-groups denote the p-groups all of whose minimal nonabelian subgroups are nonmetacyclic of order p(3). In this paper, the P1-groups are classified, and as a by-product, we prove the Hughes' conjecture is true for the P1-groups.
引用
收藏
页码:1179 / 1189
页数:11
相关论文
共 22 条
  • [1] Finite metahamiltonian p-groups
    An, Lijian
    Zhang, Qinhai
    [J]. JOURNAL OF ALGEBRA, 2015, 442 : 23 - 35
  • [2] Finite p-groups with a minimal non-abelian subgroup of index p (II)
    An LiJian
    Li Lili
    Qu HaiPeng
    Zhang QinHai
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (04) : 737 - 753
  • [3] [Anonymous], 2015, J INT ASS PROVIDE S1, V14, pS3
  • [4] [Anonymous], 2017, EUR UROL S, V16, pe1
  • [5] Berkovich Y., 2008, GROUPS PRIME POWER O
  • [6] BERKOVICH Y, 2008, CONTEMP MATH, V402, P13, DOI DOI 10.1090/CONM/402/07570
  • [7] BERKOVICH Y, 2008, GROUPS PRIME POWER O, V2
  • [8] ON HP-PROBLEM FOR FINITE P-GROUPS
    HOGAN, GT
    KAPPE, WP
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (02) : 450 - &
  • [9] Hughes DR., 1957, B AM MATH SOC, V63, P209
  • [10] On finite nonabelian 2-groups all of whose minimal nonabelian subgroups are of exponent 4
    Janko, Zvonimir
    [J]. JOURNAL OF ALGEBRA, 2007, 315 (02) : 801 - 808