Rapid two-step dipole inversion for susceptibility mapping with sparsity priors

被引:24
作者
Kames, Christian [1 ,2 ]
Wiggermann, Vanessa [1 ,2 ,3 ]
Rauscher, Alexander [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ British Columbia, UBC MRI Res Ctr, M10 Purdy Pavil,2221 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
[2] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada
[3] Univ British Columbia, Div Neurol, Dept Pediat, BC Children s Hosp, 4480 Oak St, Vancouver, BC V6H 3V4, Canada
[4] Univ British Columbia, Djavad Mowafaghian Ctr Brain Hlth, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
[5] BC Childrens Hosp, 4480 Oak St, Vancouver, BC V6H 3N1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Quantitative susceptibility mapping; Dipole inversion; Fast reconstruction; Total variation; WHITE-MATTER CONTRAST; GRADIENT-ECHO MRI; HUMAN BRAIN; MAGNETIC-SUSCEPTIBILITY; IN-VIVO; FIELD INHOMOGENEITY; MULTIPLE-SCLEROSIS; SPATIAL VARIATION; TISSUE; OPTIMIZATION;
D O I
10.1016/j.neuroimage.2017.11.018
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Quantitative susceptibility mapping (QSM) is a post-processing technique of gradient echo phase data that attempts to map the spatial distribution of local tissue magnetic susceptibilities. To obtain these maps, an ill-posed field-to-source inverse problem must be solved to remove non-local magnetic field perturbations. Current state-of-the- art algorithms which aim to solve the dipole inversion problem are plagued by the trade-off between reconstruction speed and accuracy. A two-step dipole inversion algorithm is proposed to bridge this gap. Our approach first addresses the well-conditioned k-space region, which is reconstructed using a Krylov subspace solver. Then the ill-conditioned k-space region is reconstructed by solving a constrained l1-minimization problem. The proposed pipeline does not incorporate a priori information, but utilizes sparsity constraints in the second step. We compared our method to well-established QSM algorithms with respect to COSMOS in in vivo volunteer datasets. Compared to MEDI and HEIDI the proposed algorithm produces susceptibility maps with a lower root-mean-square error and a higher coefficient of determination, with respect to COSMOS, while being 50 times faster. Our two-step dipole inversion algorithm without a priori information yields improved QSM reconstruction quality at reduced computation times compared to current state-of-the-art methods.
引用
收藏
页码:276 / 283
页数:8
相关论文
共 40 条
[1]   A serial in vivo 7T magnetic resonance phase imaging study of white matter lesions in multiple sclerosis [J].
Bian, Wei ;
Harter, Kristin ;
Hammond-Rosenbluth, Kathryn E. ;
Lupo, Janine M. ;
Xu, Duan ;
Kelley, Douglas A. C. ;
Vigneron, Daniel B. ;
Nelson, Sarah J. ;
Pelletier, Daniel .
MULTIPLE SCLEROSIS JOURNAL, 2013, 19 (01) :69-75
[2]   Fast Quantitative Susceptibility Mapping with L1-Regularization and Automatic Parameter Selection [J].
Bilgic, Berkin ;
Fan, Audrey P. ;
Polimeni, Jonathan R. ;
Cauley, Stephen F. ;
Bianciardi, Marta ;
Adalsteinsson, Elfar ;
Wald, Lawrence L. ;
Setsompop, Kawin .
MAGNETIC RESONANCE IN MEDICINE, 2014, 72 (05) :1444-1459
[3]   An Augmented Lagrangian Method for Total Variation Video Restoration [J].
Chan, Stanley H. ;
Khoshabeh, Ramsin ;
Gibson, Kristofor B. ;
Gill, Philip E. ;
Nguyen, Truong Q. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (11) :3097-3111
[4]  
Deistung A., 2016, NMR BIOMED
[5]   Susceptibility Weighted Imaging With Multiple Echoes [J].
Denk, Christian ;
Rauscher, Alexander .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2010, 31 (01) :185-191
[6]   Detecting Lesions in Multiple Sclerosis at 4.7 Tesla Using Phase Susceptibility-Weighting and T2-Weighting [J].
Eissa, Amir ;
Lebel, R. Marc ;
Korzan, Jeff R. ;
Zavodni, Anna E. ;
Warren, Kenneth G. ;
Catz, Ingrid ;
Emery, Derek J. ;
Wilman, Alan H. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2009, 30 (04) :737-742
[7]   LSMR: AN ITERATIVE ALGORITHM FOR SPARSE LEAST-SQUARES PROBLEMS [J].
Fong, David Chin-Lung ;
Saunders, Michael .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05) :2950-2971
[8]   Fast Alternating Direction Optimization Methods [J].
Goldstein, Tom ;
O'Donoghue, Brendan ;
Setzer, Simon ;
Baraniuk, Richard .
SIAM JOURNAL ON IMAGING SCIENCES, 2014, 7 (03) :1588-1623
[9]   Quantitative susceptibility mapping: current status and future directions [J].
Haacke, E. Mark ;
Liu, Saifeng ;
Buch, Sagar ;
Zheng, Weili ;
Wu, Dongmei ;
Ye, Yongquan .
MAGNETIC RESONANCE IMAGING, 2015, 33 (01) :1-25
[10]   Biophysical mechanisms of phase contrast in gradient echo MRI [J].
He, Xiang ;
Yablonskiy, Dmitriy A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (32) :13558-13563