Existence of a ground state and scattering for a nonlinear Schrodinger equation with critical growth

被引:26
|
作者
Akahori, Takafumi [1 ]
Ibrahim, Slim [2 ]
Kikuchi, Hiroaki [3 ]
Nawa, Hayato [4 ]
机构
[1] Shizuoka Univ, Fac Engn, Hamamatsu, Shizuoka 4328561, Japan
[2] Univ Victoria, Dept Math & Stat, Victoria, BC, Canada
[3] Tsuda Coll, Dept Math, Kodaira, Tokyo 1878577, Japan
[4] Osaka Univ, Div Math Sci, Dept Syst Innovat, Grad Sch Engn Sci, Toyonaka, Osaka 5608531, Japan
来源
SELECTA MATHEMATICA-NEW SERIES | 2013年 / 19卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
Nonlinear Schrodinger equation; Scattering problem; Profile decomposition; Virial identity; Variational methods; Ground state; BLOW-UP; INSTABILITY;
D O I
10.1007/s00029-012-0103-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the energy-critical focusing nonlinear Schrodinger equation with an energy-subcritical perturbation. We show the existence of a ground state in the four or higher dimensions. Moreover, we give a sufficient and necessary condition for a solution to scatter, in the spirit of Kenig and Merle (Invent Math 166:645-675, 2006).
引用
收藏
页码:545 / 609
页数:65
相关论文
共 50 条