Prediction of Promiscuity Cliffs Using Machine Learning

被引:4
作者
Blaschke, Thomas [1 ]
Feldmann, Christian [1 ]
Bajorath, Juergen [1 ]
机构
[1] Rheinische Friedrich Wilhelms Univ, LIMES Program Unit Chem Biol & Med Chem, B IT, Dept Life Sci Informat, Endenicher Allee 19c, D-53115 Bonn, Germany
关键词
multitarget activity; promiscuity; polypharmacology; machine learning; deep learning; structure-promiscuity relationships; IDENTIFIES PROMISCUITY; DRUG DISCOVERY; POLYPHARMACOLOGY;
D O I
10.1002/minf.202000196
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Compounds with the ability to interact with multiple targets, also called promiscuous compounds, provide the basis for polypharmacological drug discovery. In recent years, a plethora of structural analogs with different promiscuity has been identified. Nevertheless, the molecular origins of promiscuity remain to be elucidated. In this study, we systematically extracted different structural analogs with varying promiscuity using the matched molecular pair (MMP) formalism from public biological screening and medicinal chemistry data. Care was taken to eliminate all compounds with potential false-positive activity annotations from the analysis. Promiscuity predictions were then attempted at the level of compound pairs representing promiscuity cliffs (PCs; formed by analogs with large promiscuity differences) and corresponding non-PC MMPs (analog pairs without significant promiscuity differences). To address this prediction task, different machine learning models were generated and the results were compared with single compound predictions. PCs encoding promiscuity differences were found to contain more structure-promiscuity relationship information than sets of individual promiscuous compounds. In addition, feature analysis was carried out revealing key contributions to the correct prediction of PCs and non-PC MMPs via machine learning.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Wind Power Prediction Using Machine Learning and Deep Learning Algorithms
    Simsek, Ecem
    Gungor, Aysemuge
    Karavelioglu, Oyku
    Yerli, Mustafa Tolga
    Kuyumcuoglu, Nejat Goktug
    [J]. 2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [22] Review of bankruptcy prediction using machine learning and deep learning techniques
    Qu, Yi
    Quan, Pei
    Lei, Minglong
    Shi, Yong
    [J]. 7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2019): INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT BASED ON ARTIFICIAL INTELLIGENCE, 2019, 162 : 895 - 899
  • [23] Prediction of Water Level Using Machine Learning and Deep Learning Techniques
    Ishan Ayus
    Narayanan Natarajan
    Deepak Gupta
    [J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2023, 47 : 2437 - 2447
  • [24] Portfolio optimization with return prediction using deep learning and machine learning
    Ma, Yilin
    Han, Ruizhu
    Wang, Weizhong
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 165
  • [25] Data structures for compound promiscuity analysis: promiscuity cliffs, pathways and promiscuity hubs formed by inhibitors of the human kinome
    Miljkovic, Filip
    Bajorath, Juergen
    [J]. FUTURE SCIENCE OA, 2019, 5 (07):
  • [26] Gentrification Prediction Using Machine Learning
    Alejandro, Yesenia
    Palafox, Leon
    [J]. ADVANCES IN SOFT COMPUTING, MICAI 2019, 2019, 11835 : 187 - 199
  • [27] RCA Prediction using Machine Learning
    Lalwani, Hiro
    Gupta, Rachit
    Srivastava, Sandeep
    Jayaram, Sahana
    [J]. 2019 5TH IEEE INTERNATIONAL WIE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE 2019), 2019,
  • [28] Recruitment Prediction using Machine Learning
    Reddy, Jagan Mohan D.
    Regella, Sirisha
    Seelam, Srinivasa Reddy
    [J]. PROCEEDINGS OF THE 2020 5TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND SECURITY (ICCCS-2020), 2020,
  • [29] Diabetes Prediction using Machine Learning
    Kharkwal, Tarun
    Meena, Shweta
    [J]. INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (02) : 6999 - 7005
  • [30] Crime Prediction Using Machine Learning
    Ling, Hneah Guey
    Jian, Teng Wei
    Mohanan, Vasuky
    Yeo, Sook Fern
    Jothi, Neesha
    [J]. FORTHCOMING NETWORKS AND SUSTAINABILITY IN THE AIOT ERA, VOL 1, FONES-AIOT 2024, 2024, 1035 : 92 - 103