Prediction of Promiscuity Cliffs Using Machine Learning

被引:4
|
作者
Blaschke, Thomas [1 ]
Feldmann, Christian [1 ]
Bajorath, Juergen [1 ]
机构
[1] Rheinische Friedrich Wilhelms Univ, LIMES Program Unit Chem Biol & Med Chem, B IT, Dept Life Sci Informat, Endenicher Allee 19c, D-53115 Bonn, Germany
关键词
multitarget activity; promiscuity; polypharmacology; machine learning; deep learning; structure-promiscuity relationships; IDENTIFIES PROMISCUITY; DRUG DISCOVERY; POLYPHARMACOLOGY;
D O I
10.1002/minf.202000196
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Compounds with the ability to interact with multiple targets, also called promiscuous compounds, provide the basis for polypharmacological drug discovery. In recent years, a plethora of structural analogs with different promiscuity has been identified. Nevertheless, the molecular origins of promiscuity remain to be elucidated. In this study, we systematically extracted different structural analogs with varying promiscuity using the matched molecular pair (MMP) formalism from public biological screening and medicinal chemistry data. Care was taken to eliminate all compounds with potential false-positive activity annotations from the analysis. Promiscuity predictions were then attempted at the level of compound pairs representing promiscuity cliffs (PCs; formed by analogs with large promiscuity differences) and corresponding non-PC MMPs (analog pairs without significant promiscuity differences). To address this prediction task, different machine learning models were generated and the results were compared with single compound predictions. PCs encoding promiscuity differences were found to contain more structure-promiscuity relationship information than sets of individual promiscuous compounds. In addition, feature analysis was carried out revealing key contributions to the correct prediction of PCs and non-PC MMPs via machine learning.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Poster:Stock Price Prediction using Machine Learning
    Chen, Kuan-Yu
    Lee, Pei-Ju
    Liu, Shang-Chien
    2023 IEEE 43RD INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, ICDCS, 2023, : 1067 - 1068
  • [12] The Prediction of Workplace Turnover Using Machine Learning Technique
    Choi, Youngkeun
    Choi, Jae Won
    INTERNATIONAL JOURNAL OF BUSINESS ANALYTICS, 2021, 8 (04) : 1 - 10
  • [13] Electrical Energy Consumption Prediction Using Machine Learning
    Stankoski, Simon
    Kiprijanovska, Ivana
    Ilievski, Igor
    Slobodan, Jovanovski
    Gjoreski, Hristijan
    ICT INNOVATIONS 2019: BIG DATA PROCESSING AND MINING, 2019, 1110 : 72 - 82
  • [14] Prediction of Cloud Fractional Cover Using Machine Learning
    Svennevik, Hanna
    Riegler, Michael A.
    Hicks, Steven
    Storelvmo, Trude
    Hammer, Hugo L.
    BIG DATA AND COGNITIVE COMPUTING, 2021, 5 (04)
  • [15] Prediction of road crash attributes using machine learning
    Bagga, Ashwini
    Srivastava, Sumit
    Shekhawat, Rajveer Singh
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2024, 45 (04) : 1217 - 1227
  • [16] Soil utilisation prediction for farmers using machine learning
    Zakir, Abdul Qadir
    Singhal, Anushka
    Singh, Gurkirat
    Pandey, Pracheesh
    Sankaranarayanan, Suresh
    INTERNATIONAL JOURNAL OF SUSTAINABLE AGRICULTURAL MANAGEMENT AND INFORMATICS, 2021, 7 (01) : 67 - 75
  • [17] Prediction of Atrial Fibrillation Using Machine Learning: A Review
    Tseng, Andrew S.
    Noseworthy, Peter A.
    FRONTIERS IN PHYSIOLOGY, 2021, 12
  • [18] Wind Power Prediction Using Machine Learning and Deep Learning Algorithms
    Simsek, Ecem
    Gungor, Aysemuge
    Karavelioglu, Oyku
    Yerli, Mustafa Tolga
    Kuyumcuoglu, Nejat Goktug
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [19] Data structures for compound promiscuity analysis: promiscuity cliffs, pathways and promiscuity hubs formed by inhibitors of the human kinome
    Miljkovic, Filip
    Bajorath, Juergen
    FUTURE SCIENCE OA, 2019, 5 (07):
  • [20] Review of bankruptcy prediction using machine learning and deep learning techniques
    Qu, Yi
    Quan, Pei
    Lei, Minglong
    Shi, Yong
    7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2019): INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT BASED ON ARTIFICIAL INTELLIGENCE, 2019, 162 : 895 - 899