Turing instabilities in reaction-diffusion systems with cross diffusion

被引:36
|
作者
Fanelli, Duccio [1 ,2 ]
Cianci, Claudia [2 ,3 ]
Di Patti, Francesca [1 ,2 ]
机构
[1] Univ Florence, Dipartimento Fis & Astron, I-50019 Sesto Fiorentino, Italy
[2] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy
[3] Univ Florence, Dipartimento Sistemi & Informat, I-50139 Florence, Italy
来源
EUROPEAN PHYSICAL JOURNAL B | 2013年 / 86卷 / 04期
关键词
PATTERN-FORMATION; PATCHINESS; CELLS;
D O I
10.1140/epjb/e2013-30649-7
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Turing instability paradigm is revisited in the context of a multispecies diffusion scheme derived from a self-consistent microscopic formulation. The analysis is developed with reference to the case of two species. These latter share the same spatial reservoir and experience a degree of mutual interference due to the competition for the available resources. Turing instability can set in for all ratios of the main diffusivities, also when the (isolated) activator diffuses faster then the (isolated) inhibitor. This conclusion, at odd with the conventional vision, is here exemplified for the Brusselator model and ultimately stems from having assumed a generalized model of multispecies diffusion, fully anchored to first principles, which also holds under crowded conditions.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Turing instabilities in reaction-diffusion systems with cross diffusion
    Duccio Fanelli
    Claudia Cianci
    Francesca Di Patti
    The European Physical Journal B, 2013, 86
  • [2] conditions for Turing and wave instabilities in reaction-diffusion systems
    Villar-Sepulveda, Edgardo
    Champneys, Alan R. R.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2023, 86 (03)
  • [3] ON TURING-HOPF INSTABILITIES IN REACTION-DIFFUSION SYSTEMS
    Ricard, Mariano Rodriguez
    BIOMAT 2007, 2008, : 293 - 313
  • [4] Turing instabilities in a glycolysis reaction-diffusion system
    Atabaigi, Ali
    APPLICABLE ANALYSIS, 2024, 103 (02) : 377 - 392
  • [5] Turing space in reaction-diffusion systems with density-dependent cross diffusion
    Zemskov, E. P.
    Kassner, K.
    Hauser, M. J. B.
    Horsthemke, W.
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [6] Turing Instability in Reaction-Diffusion Systems with Nonlinear Diffusion
    Zemskov, E. P.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2013, 117 (04) : 764 - 769
  • [7] Turing instability in reaction-diffusion systems with nonlinear diffusion
    E. P. Zemskov
    Journal of Experimental and Theoretical Physics, 2013, 117 : 764 - 769
  • [8] Turing-type instabilities in bulk-surface reaction-diffusion systems
    Raetz, Andreas
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 289 : 142 - 152
  • [9] Cross-diffusion-induced transitions between Turing patterns in reaction-diffusion systems
    Meng, Xing-Rou
    Liu, Ruo-Qi
    He, Ya-Feng
    Deng, Teng-Kun
    Liu, Fu-Cheng
    ACTA PHYSICA SINICA, 2023, 72 (19)
  • [10] Turing patterns, spatial bistability, and front instabilities in a reaction-diffusion system
    Szalai, I
    De Kepper, P
    JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (25): : 5315 - 5321