Turing instabilities in reaction-diffusion systems with cross diffusion

被引:36
|
作者
Fanelli, Duccio [1 ,2 ]
Cianci, Claudia [2 ,3 ]
Di Patti, Francesca [1 ,2 ]
机构
[1] Univ Florence, Dipartimento Fis & Astron, I-50019 Sesto Fiorentino, Italy
[2] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy
[3] Univ Florence, Dipartimento Sistemi & Informat, I-50139 Florence, Italy
关键词
PATTERN-FORMATION; PATCHINESS; CELLS;
D O I
10.1140/epjb/e2013-30649-7
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Turing instability paradigm is revisited in the context of a multispecies diffusion scheme derived from a self-consistent microscopic formulation. The analysis is developed with reference to the case of two species. These latter share the same spatial reservoir and experience a degree of mutual interference due to the competition for the available resources. Turing instability can set in for all ratios of the main diffusivities, also when the (isolated) activator diffuses faster then the (isolated) inhibitor. This conclusion, at odd with the conventional vision, is here exemplified for the Brusselator model and ultimately stems from having assumed a generalized model of multispecies diffusion, fully anchored to first principles, which also holds under crowded conditions.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Turing instabilities in a glycolysis reaction-diffusion system
    Atabaigi, Ali
    APPLICABLE ANALYSIS, 2024, 103 (02) : 377 - 392
  • [2] Turing space in reaction-diffusion systems with density-dependent cross diffusion
    Zemskov, E. P.
    Kassner, K.
    Hauser, M. J. B.
    Horsthemke, W.
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [3] Control of transversal instabilities in reaction-diffusion systems
    Totz, Sonja
    Loeber, Jakob
    Totz, Jan Frederik
    Engel, Harald
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [4] On the speed of propagation in Turing patterns for reaction-diffusion systems
    Klika, Vaclav
    Gaffney, Eamonn A.
    Maini, Philip K.
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 467
  • [5] Amplitude equations for reaction-diffusion systems with cross diffusion
    Zemskov, Evgeny P.
    Vanag, Vladimir K.
    Epstein, Irving R.
    PHYSICAL REVIEW E, 2011, 84 (03):
  • [6] Turing instability in the reaction-diffusion network
    Zheng, Qianqian
    Shen, Jianwei
    Xu, Yong
    PHYSICAL REVIEW E, 2020, 102 (06)
  • [7] Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion
    Gambino, G.
    Lombardo, M. C.
    Sammartino, M.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (06) : 1112 - 1132
  • [8] Turing's Diffusive Threshold in Random Reaction-Diffusion Systems
    Haas, Pierre A.
    Goldstein, Raymond E.
    PHYSICAL REVIEW LETTERS, 2021, 126 (23)
  • [9] Instability induced by cross-diffusion in reaction-diffusion systems
    Tian, Canrong
    Lin, Zhigui
    Pedersen, Michael
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (02) : 1036 - 1045
  • [10] Instabilities in hyperbolic reaction-diffusion system with cross diffusion and species-dependent inertia
    Ghorai, Santu
    Bairagi, Nandadulal
    CHAOS SOLITONS & FRACTALS, 2022, 165