Bond Order Conservation Strategies in Catalysis Applied to the NH3 Decomposition Reaction

被引:28
作者
Yu, Liang [1 ,2 ]
Abild-Pedersen, Frank [2 ]
机构
[1] Stanford Univ, Dept Chem Engn, SUNCAT Ctr Interface Sci & Catalysis, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
来源
ACS CATALYSIS | 2017年 / 7卷 / 01期
关键词
density functional theory; catalysis; transition state scaling relation; r-scaling; microkinetics; ammonia decomposition; COX-FREE HYDROGEN; FUEL-CELL APPLICATIONS; LOW-TEMPERATURE DECOMPOSITION; STATE SCALING RELATIONS; AMMONIA DECOMPOSITION; ULTRASOFT PSEUDOPOTENTIALS; MOLECULAR-DYNAMICS; GENERATION; CHEMISORPTION; KINETICS;
D O I
10.1021/acscatal.6b03129
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
On the basis of an extensive set of density functional theory calculations, it is shown that a simple scheme provides a fundamental understanding of variations in the transition state energies and structures of reaction intermediates on transition metal surfaces across the periodic table. The scheme is built on the bond order conservation principle and requires a limited set of input data, still achieving transition state energies as a function of simple descriptors with an error smaller than those of approaches based on linear fits to a set of calculated transition state energies. We have applied this approach together with linear scaling of adsorption energies to obtain the energetics of the NH3 decomposition reaction on a series of stepped fcc(211) transition metal surfaces. This information is used to establish a microkinetic model for the formation of N-2 and H-2, thus providing insight into the components of the reaction that determines the activity.
引用
收藏
页码:864 / 871
页数:8
相关论文
共 33 条
  • [1] Investigation of low temperature decomposition of ammonia using spatially patterned catalytic membrane reactors
    Abashar, MEE
    Al-Sughair, YS
    Al-Mutaz, IS
    [J]. APPLIED CATALYSIS A-GENERAL, 2002, 236 (1-2) : 35 - 53
  • [2] Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces
    Abild-Pedersen, F.
    Greeley, J.
    Studt, F.
    Rossmeisl, J.
    Munter, T. R.
    Moses, P. G.
    Skulason, E.
    Bligaard, T.
    Norskov, J. K.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (01)
  • [3] Bell R. P., 1936, Proc.R. Soc. London. Ser. A-Math. Phys. Sci, V154, P414, DOI [10.1098/rspa.1936.0060, DOI 10.1098/RSPA.1936.0060]
  • [4] Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst
    Boisen, A
    Dahl, S
    Norskov, JK
    Christensen, CH
    [J]. JOURNAL OF CATALYSIS, 2005, 230 (02) : 309 - 312
  • [5] Kinetics of NH3 decomposition over well dispersed Ru
    Bradford, MCJ
    Fanning, PE
    Vannice, MA
    [J]. JOURNAL OF CATALYSIS, 1997, 172 (02) : 479 - 484
  • [6] Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications
    Chellappa, AS
    Fischer, CM
    Thomson, WJ
    [J]. APPLIED CATALYSIS A-GENERAL, 2002, 227 (1-2) : 231 - 240
  • [7] Bronsted-Evans-Polanyi relation of multistep reactions and volcano curve in heterogeneous catalysis
    Cheng, Jun
    Hu, P.
    Ellis, Peter
    French, Sam
    Kelly, Gordon
    Lok, C. Martin
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (05) : 1308 - 1311
  • [8] Catalytic ammonia decomposition:: COx-free hydrogen production for fuel cell applications
    Choudhary, TV
    Sivadinarayana, C
    Goodman, DW
    [J]. CATALYSIS LETTERS, 2001, 72 (3-4) : 197 - 201
  • [9] Inertia and driving force of chemical reactions.
    Evans, MG
    Polanyi, M
    [J]. TRANSACTIONS OF THE FARADAY SOCIETY, 1938, 34 (01): : 0011 - 0023
  • [10] A priori catalytic activity correlations:: the difficult case of hydrogen production from ammonia
    Ganley, JC
    Thomas, FS
    Seebauer, EG
    Masel, RI
    [J]. CATALYSIS LETTERS, 2004, 96 (3-4) : 117 - 122