Higgs inflation, vacuum stability, and leptogenesis

被引:9
作者
Barrie, Neil D. [1 ]
Sugamoto, Akio [2 ,3 ]
Takeuchi, Tatsu [4 ]
Yamashita, Kimiko [5 ,6 ]
机构
[1] Univ Tokyo, UTIAS, Kavli IPMU WPI, Kashiwa, Chiba 2778583, Japan
[2] Ochanomizu Univ, Grad Sch Humanities & Sci, Dept Phys, Bunkyo Ku, 2-1-1 Otsuka, Tokyo 1128610, Japan
[3] Open Univ Japan, Tokyo Bunkyo SC, Tokyo 1120012, Japan
[4] Virginia Tech, Dept Phys, Ctr Neutrino Phys, Blacksburg, VA 24061 USA
[5] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[6] Natl Tsing Hua Univ, Dept Phys, Hsinchu 300, Taiwan
基金
美国国家科学基金会;
关键词
Beyond Standard Model; Cosmology of Theories beyond the SM; Higgs Physics; Neutrino Physics; STANDARD MODEL; BOSON; MASS; GRAVITY;
D O I
10.1007/JHEP08(2020)072
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider the introduction of a complex scalar field carrying a global lepton number charge to the Standard Model and the Higgs inflation framework. The conditions are investigated under which this model can simultaneously ensure Higgs vacuum stability up to the Planck scale, successful inflation, non-thermal Leptogenesis via the pendulum mechanism, and light neutrino masses. These can be simultaneously achieved when the scalar lepton is minimally coupled to gravity, that is, when standard Higgs inflation and reheating proceed without the interference of the additional scalar degrees of freedom. If the scalar lepton also has a non-minimal coupling to gravity, a multi-field inflation scenario is induced, with interesting interplay between the successful inflation constraints and those from vacuum stability and Leptogenesis. The parameter region that can simultaneously achieve the above goals is explored.
引用
收藏
页数:37
相关论文
共 65 条
[1]   Planck 2018 results: V. CMB power spectra and likelihoods [J].
Aghanim, N. ;
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Casaponsa, B. ;
Challinor, A. ;
Chiang, H. C. ;
Colombo, L. P. L. ;
Combet, C. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Rosa, A. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. ;
Fernandez-Cobos, R. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[2]  
[Anonymous], 2009, J COSMOL ASTROPART P, DOI DOI 10.1088/1475-7516/2009/12/003
[3]  
[Anonymous], 1980, J LOW TEMP PHYS
[4]  
[Anonymous], 2012, PHYS LETT B, DOI DOI 10.1016/J.PHYSLETB.2012.02.013
[5]  
[Anonymous], 2012, J HIGH ENERGY PHYS, DOI DOI 10.1007/JHEP06(2012)031
[6]  
[Anonymous], 1984, PHYS LETT B
[7]  
[Anonymous], 2018, MOD PHYS LETT A, DOI DOI 10.1142/S0217732318500979
[8]  
[Anonymous], 1988, PHYS LETT B
[9]  
[Anonymous], 1982, PHYS REV A
[10]  
[Anonymous], 1988, PHYS REV D