Amperometric glucose sensor based on nickel nanoparticles/carbon Vulcan XC-72R

被引:68
作者
Hameed, R. M. Abdel [1 ]
机构
[1] Cairo Univ, Fac Sci, Dept Chem, Giza, Egypt
关键词
Glucose; Non-enzymatic sensor; Nickel nanoparticles; Carbon black; Microwave irradiation; Chemical synthesis; GLASSY-CARBON ELECTRODE; SUPPORTED PTRU NANOPARTICLES; MICROWAVE-ASSISTED SYNTHESIS; FUEL-CELL APPLICATIONS; ELECTROCATALYTIC OXIDATION; PASTE ELECTRODE; ELECTROCHEMICAL OXIDATION; SONOCHEMICAL PREPARATION; PALLADIUM NANOPARTICLES; ALKALINE MEDIA;
D O I
10.1016/j.bios.2013.02.044
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A stable non-enzymatic glucose sensor was constructed by chemical deposition of nickel nanoparticles on carbon Vulcan XC-72R using microwave irradiation technique. The mode and time of microwave irradiation during nickel salt reduction were varied. This was found to affect the morphology of formed Ni/C powder as evidenced by TEM analysis. Nickel nanoparticles aggregation becomes more serious at longer microwave irradiation times. The electrocatalytic activity of different Ni/C samples towards glucose oxidation was studied in KOH solution by employing cyclic voltammetry and chronoamperometry techniques. Ni/C sample, prepared by pulse mode with total operating time of 150 s, showed the highest oxidation current density. An excellent sensitivity value of 1349.7 mu A mM(-1) cm(-2) with a detection limit of 0.232 mu M was gained by Ni/C sensor. It also exhibits good reproducibility and long-term stability, as well as high selectivity with insignificant interference from ascorbic acid. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:248 / 257
页数:10
相关论文
共 84 条
[1]   ELECTROCHEMICAL OXIDATION OF GLUCOSE ON SINGLE-CRYSTAL GOLD SURFACES [J].
ADZIC, RR ;
HSIAO, MW ;
YEAGER, EB .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1989, 260 (02) :475-485
[2]   Shape-controlled synthesis of colloidal platinum nanoparticles [J].
Ahmadi, TS ;
Wang, ZL ;
Green, TC ;
Henglein, A ;
ElSayed, MA .
SCIENCE, 1996, 272 (5270) :1924-1926
[3]   Carbohydrates electrocatalytic oxidation using CNT-NiCo-oxide modified electrodes [J].
Arvinte, Adina ;
Sesay, Adama-Marie ;
Virtanen, Vesa .
TALANTA, 2011, 84 (01) :180-186
[4]   Pt-Pb nanowire array electrode for enzyme-free glucose detection [J].
Bai, Yu ;
Sun, Yingying ;
Sun, Changqing .
BIOSENSORS & BIOELECTRONICS, 2008, 24 (04) :579-585
[5]   Nickel oxide microfibers immobilized onto electrode by electrospinning and calcination for nonenzymatic glucose sensor and effect of calcination temperature on the performance [J].
Cao, Fei ;
Guo, Shu ;
Ma, Huiyan ;
Shan, Decai ;
Yang, Shengxue ;
Gong, Jian .
BIOSENSORS & BIOELECTRONICS, 2011, 26 (05) :2756-2760
[6]   Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite [J].
Chen, Jin ;
Zhang, Wei-De ;
Ye, Jian-Shan .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (09) :1268-1271
[7]   Microwave-assisted synthesis of carbon supported Pt nanoparticles for fuel cell applications [J].
Chen, WX ;
Lee, JY ;
Liu, ZL .
CHEMICAL COMMUNICATIONS, 2002, (21) :2588-2589
[8]   Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes [J].
Chen, Xiao-mei ;
Lin, Zhi-jie ;
Chen, De-Jun ;
Jia, Tian-tian ;
Cai, Zhi-min ;
Wang, Xiao-ru ;
Chen, Xi ;
Chen, Guo-nan ;
Oyama, Munetaka .
BIOSENSORS & BIOELECTRONICS, 2010, 25 (07) :1803-1808
[9]   Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection [J].
Cherevko, Serhiy ;
Chung, Chan-Hwa .
SENSORS AND ACTUATORS B-CHEMICAL, 2009, 142 (01) :216-223
[10]   Pt-Pb alloy nanoparticle/carbon nanotube nanocomposite: a strong electrocatalyst for glucose oxidation [J].
Cui, Hui-Fang ;
Ye, Jian-Shan ;
Liu, Xiao ;
Zhang, Wei-De ;
Sheu, Fwu-Shan .
NANOTECHNOLOGY, 2006, 17 (09) :2334-2339