Approximation properties for free orthogonal and free unitary quantum groups

被引:53
作者
Brannan, Michael [1 ]
机构
[1] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2012年 / 672卷
基金
加拿大自然科学与工程研究理事会;
关键词
REDUCED FREE-PRODUCTS; CO-AMENABILITY; MULTIPLIERS;
D O I
10.1515/CRELLE.2011.166
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the structure of the reduced C*-algebras and von Neumann algebras associated to the free orthogonal and free unitary quantum groups. We show that the reduced von Neumann algebras of these quantum groups always have the Haagerup approximation property. Combining this result with a Haagerup-type inequality due to Vergnioux, we also show that the reduced C*-algebras always have the metric approximation property.
引用
收藏
页码:223 / 251
页数:29
相关论文
共 42 条
[1]  
[Anonymous], 2006, LECT COMBINATORICS F, DOI DOI 10.1017/CBO9780511735127
[2]  
BAAJ S, 1993, ANN SCI ECOLE NORM S, V26, P425
[3]  
Banica T, 1996, CR ACAD SCI I-MATH, V322, P241
[4]  
Banica T, 1997, COMMUN MATH PHYS, V190, P143, DOI 10.1007/s002200050237
[5]  
BANICA T, 2008, ANN MATH BLAISE PASC, V15, P135, DOI [10.5802/ambp.243, DOI 10.5802/AMBP.243]
[6]   Integration over compact quantum groups [J].
Banica, Teodor ;
Collins, Benoit .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2007, 43 (02) :277-302
[7]   Stochastic aspects of easy quantum groups [J].
Banica, Teodor ;
Curran, Stephen ;
Speicher, Roland .
PROBABILITY THEORY AND RELATED FIELDS, 2011, 149 (3-4) :435-462
[8]   Amenability and co-amenability for locally compact quantum groups [J].
Bédos, E ;
Tuset, L .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2003, 14 (08) :865-884
[9]   Amenability and co-amenability of algebraic quantum groups II [J].
Bédos, E ;
Murphy, GJ ;
Tuset, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 201 (02) :303-340
[10]  
Bédos E, 2001, J GEOM PHYS, V40, P130, DOI 10.1016/S0393-0440(01)00024-9