Effect of Pluronic F127 on the Photosensitizing Properties of Dimegine in the Presence of Nanoparticles

被引:3
作者
Aksenova, N. A. [1 ]
Kardumyan, V. V. [1 ]
Glagolev, N. N. [1 ]
Shashkova, V. T. [1 ]
Matveeva, I. A. [1 ]
Timashev, P. S. [2 ]
Solov'eva, A. B. [1 ]
机构
[1] Russian Acad Sci, Semenov Inst Chem Phys, Moscow 119991, Russia
[2] Russian Acad Sci, Inst Laser & Informat Technol, Moscow 117971, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
porphyrin photosensitizers; nanoparticles; amphiphilic polymers; photooxidation of tryptophan; photodynamic therapy; GOLD NANOPARTICLES; HYDROXYAPATITE PARTICLES; PHOTOTHERMAL THERAPY; PROTEIN ADSORPTION; PORPHYRINS;
D O I
10.1134/S0036024415080026
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is shown that the activity of the water-soluble porphyrin photosensitizer dimegine (DMG) in the oxidation reaction of tryptophan, a test reaction for photodynamic therapy (PDT), can be enhanced by introducing silver, gold, and hydroxyapatite nanoparticles (NP) into the reaction medium if an amphiphilic polymer (AP) with the properties of a SAS is introduced into this mixture. It is concluded that the effect of enhancing the photosensitizing activity of dimegine is due to the formation of nanoparticle-Pluronic-porphyrin triple systems in which Pluronic (PL) plays the role of a bridge, forming complex and adsorption bonds with porphyrin and nanoparticles.
引用
收藏
页码:1486 / 1491
页数:6
相关论文
共 25 条
[1]  
Aksenova N A., 2013, PHOTONICS LASERS MED, V2, P189, DOI [10.1515/plm-2013-0011, DOI 10.1515/PLM-2013-0011]
[2]  
Alanazi Fars K, 2010, Saudi Pharm J, V18, P179, DOI 10.1016/j.jsps.2010.07.002
[3]   Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy [J].
Boca, Sanda C. ;
Potara, Monica ;
Gabudean, Ana-Maria ;
Juhem, Aurelie ;
Baldeck, Patrice L. ;
Astilean, Simion .
CANCER LETTERS, 2011, 311 (02) :131-140
[4]   The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy [J].
Burke, Andrew R. ;
Singh, Ravi N. ;
Carroll, David L. ;
Wood, James C. S. ;
D'Agostino, Ralph B., Jr. ;
Ajayan, Pulickel M. ;
Torti, Frank M. ;
Torti, Suzy V. .
BIOMATERIALS, 2012, 33 (10) :2961-2970
[5]   Unquenched fluorescence lifetime for β-phenylthio substituted zinc phthalocyanine upon conjugation to gold nanoparticles [J].
Forteath, Shaun ;
Antunes, Edith ;
Chidawanyika, Wadzanai ;
Nyokong, Tebello .
POLYHEDRON, 2012, 34 (01) :114-120
[6]   Near-Infrared-Resonant Gold/Gold Sulfide Nanoparticles as a Photothermal Cancer Therapeutic Agent [J].
Gobin, Andre M. ;
Watkins, Emily M. ;
Quevedo, Elizabeth ;
Colvin, Vicki L. ;
West, Jennifer L. .
SMALL, 2010, 6 (06) :745-752
[7]   Antimicrobial Photodynamic Therapy and Photodynamic Inactivation, or Killing Bugs with Dyes and Light-A Symposium-in-Print [J].
Hamblin, Michael R. .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2012, 88 (03) :496-498
[8]   Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: A potential delivery vehicle for photodynamic therapy [J].
Hone, DC ;
Walker, PI ;
Evans-Gowing, R ;
FitzGerald, S ;
Beeby, A ;
Chambrier, I ;
Cook, MJ ;
Russell, DA .
LANGMUIR, 2002, 18 (08) :2985-2987
[9]  
Krasnovskii A. A., 1990, ITOGI NAUKI TEK SPNT, P63
[10]   Modulating protein adsorption onto hydroxyapatite particles using different amino acid treatments [J].
Lee, Wing-Hin ;
Loo, Ching-Yee ;
Van, Kim Linh ;
Zavgorodniy, Alexander V. ;
Rohanizadeh, Ramin .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2012, 9 (70) :918-927