Enhancing the Electrochemical Performance of Olivine LiMnPO4 as Cathode Materials for Li-Ion Batteries by Ni-Fe Codoping

被引:37
作者
Oukahou, Said [1 ]
Maymoun, Mohammad [1 ]
Elomrani, Abdelali [1 ]
Sbiaai, Khalid [1 ]
Hasnaoui, Abdellatif [1 ]
机构
[1] Sultan Moulay Slimane Univ Beni Mellal, Polydisciplinary Fac Khouribga, ME Lab LS2, Khouribga 25000, Morocco
关键词
density functional theory; LiMnPO4; lithium-ion batteries; codoping; barrier energy; DENSITY-FUNCTIONAL THEORY; NANOCOMPOSITE CATHODE; LIMPO4; M; MPO4; MN; CO; INTERCALATION; LIFEPO4;
D O I
10.1021/acsaem.2c01319
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The cathode material is one of the components that play a key role in the safety, cost, and performance of Li-ion batteries. LiMnPO4 (LMP) has attracted significant attention as a potential cathode material for Li-ion rechargeable batteries due to its series of advantages. However, LMP suffers from low electronic and ionic conductivity. Therefore, this work aims to overcome these constraints of LMP by Ni-Fe codoping. In this regard, we used density functional theory simulations to investigate the effect of Ni-Fe codoping on the structural, electronic, magnetic, electrochemical potential, and kinetic properties of lithiated/ delithiated pristine phases (i.e., ), as well as on the thermodynamic stability, the theoretical capacity, the charge transfer, the average M-O bond lengths, and the electrical conductivity. We also evaluated the thermodynamic stability and charge transfer of Ni/Fe single doping in lithiated/delithiated (LiMnPO4/MnPO4) pristine phases, that is, LMNP/MNP (LiMn0.5Ni0.5PO4/Mn0.5Ni0.5PO4) and LMFP/MFP (LMn(0.5)Fe0.5PO4/Mn0.5Fe0.5PO4). We have found that Ni-Fe codoping affected the structural, electronic, kinetic properties, and electrical conductivity of pristine LMP. The volume of LMP decreased with Ni-Fe codoping. Moreover, a small change in unit cell volume between lithiated and delithiated phases was found for all structures, indicating good reversibility during Li insertion/ extraction. Ni-Fe codoping reduces the band gap of LMP from 3.62 to 1.55 eV, resulting in a good improvement in the electronic conductivity. The migration barrier energy was calculated to be 0.34 eV for Li-ions in MNFP, which is lower than that of MP (0.40 eV), indicating that Ni-Fe codoping is beneficial for enhancing the ionic conductivity of pristine LMP. This study may supply insights for the development of LMNFP cathode materials in lithium-ion rechargeable battery applications.
引用
收藏
页码:10591 / 10603
页数:13
相关论文
共 69 条
[1]   Density Functional Theory Investigation of Mixed Transition Metals in Olivine and Tavorite Cathode Materials for Li-Ion Batteries [J].
Alfaruqi, Muhammad Hilmy ;
Kim, Seokhun ;
Park, Sohyun ;
Lee, Seulgi ;
Lee, Jun ;
Hwang, Jang-Yeon ;
Sun, Yang-Kook ;
Kim, Jaekook .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (14) :16376-16386
[2]   LiMnPO4 - A next generation cathode material for lithium-ion batteries [J].
Aravindan, Vanchiappan ;
Gnanaraj, Joe ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (11) :3518-3539
[3]   Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides [J].
Aydinol, MK ;
Kohan, AF ;
Ceder, G ;
Cho, K ;
Joannopoulos, J .
PHYSICAL REVIEW B, 1997, 56 (03) :1354-1365
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]  
Dai YH, 2003, SIAM J OPTIMIZ, V13, P693
[6]   Calculations of Li-Ion Diffusion in Olivine Phosphates [J].
Dathar, Gopi Krishna Phani ;
Sheppard, Daniel ;
Stevenson, Keith J. ;
Henkelman, Graeme .
CHEMISTRY OF MATERIALS, 2011, 23 (17) :4032-4037
[7]   Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials [J].
Delacourt, C ;
Laffont, L ;
Bouchet, R ;
Wurm, C ;
Leriche, JB ;
Morcrette, M ;
Tarascon, JM ;
Masquelier, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A913-A921
[8]   Two dimensional h-BSb mono-layer as a promising anode material for lithium-ion batteries studied from ab initio simulations [J].
Elomrani, A. ;
Lamhani, M. ;
Oukahou, S. ;
Sbiaai, K. ;
Lebegue, S. ;
Hasnaoui, A. .
MATERIALS CHEMISTRY AND PHYSICS, 2022, 275
[9]   QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J].
Giannozzi, Paolo ;
Baroni, Stefano ;
Bonini, Nicola ;
Calandra, Matteo ;
Car, Roberto ;
Cavazzoni, Carlo ;
Ceresoli, Davide ;
Chiarotti, Guido L. ;
Cococcioni, Matteo ;
Dabo, Ismaila ;
Dal Corso, Andrea ;
de Gironcoli, Stefano ;
Fabris, Stefano ;
Fratesi, Guido ;
Gebauer, Ralph ;
Gerstmann, Uwe ;
Gougoussis, Christos ;
Kokalj, Anton ;
Lazzeri, Michele ;
Martin-Samos, Layla ;
Marzari, Nicola ;
Mauri, Francesco ;
Mazzarello, Riccardo ;
Paolini, Stefano ;
Pasquarello, Alfredo ;
Paulatto, Lorenzo ;
Sbraccia, Carlo ;
Scandolo, Sandro ;
Sclauzero, Gabriele ;
Seitsonen, Ari P. ;
Smogunov, Alexander ;
Umari, Paolo ;
Wentzcovitch, Renata M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)
[10]   Density Functional Theory for Battery Materials [J].
He, Qiu ;
Yu, Bin ;
Li, Zhaohuai ;
Zhao, Yan .
ENERGY & ENVIRONMENTAL MATERIALS, 2019, 2 (04) :264-279