CsPbI2Br Perovskite Solar Cells Based on Carbon Black-Containing Counter Electrodes

被引:58
作者
Gong, Shuiping [1 ,2 ]
Li, Haiyan [1 ]
Chen, Zongqi [1 ]
Shou, Chunhui [3 ]
Huang, Mianji [3 ]
Yang, Songwang [1 ,2 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Mat Energy Convers, Shanghai Inst Ceram, Shanghai 201899, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Zhejiang Energy Grp R&D, Key Lab Solar Energy Utilizat & Energy Saving Tec, Hangzhou 310003, Zhejiang, Peoples R China
关键词
carbon black nanoparticle; inorganic perovskite; interlayer; diffusion of carbon black; long-term stability; bulk heterojunction solar cell; INDUCED DEGRADATION; SURFACE-CHEMISTRY; HIGH-EFFICIENCY; NANOPARTICLES; DEPOSITION; FILMS;
D O I
10.1021/acsami.0c08006
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
CsPbI2Br perovskite solar cells (PSCs) based on carbon electrodes (CEs) are considered to be low-cost and thermally stable devices. Nevertheless, the insufficient contact and energy level mismatch between the CsPbI2Br layer and CE hinder the further enhancement of the cell efficiency. Herein, a carbon black (CB) interlayer was introduced between the perovskite layer and CE. The hole extraction was facilitated due to the larger contact area and suitable energy band alignment in the CsPbI2Br/CB interface. Further investigation indicated the diffusion of CB nanoparticles from the CE or CB layer to the CsPbI2Br film after a certain period of time. We disclosed the formation of a CsPbI2Br bulk heterojunction structure due to the carbon diffusion, which resulted in an efficiency enhancement. As a result, a record efficiency of 13.13% is achieved for carbon-based inorganic PSCs. This work also reveals that the diffusion of CB nanoparticles in CB-containing PSCs is universal and inevitable, although this kind of diffusion results in the enhancement of cell efficiency.
引用
收藏
页码:34882 / 34889
页数:8
相关论文
共 61 条
[1]   Electric-Field-Induced Degradation of Methylammonium Lead Iodide Perovskite Solar Cells [J].
Bae, Soohyun ;
Kim, Seongtak ;
Lee, Sang-Won ;
Cho, Kyung Jin ;
Park, Sungeun ;
Lee, Seunghun ;
Kang, Yoonmook ;
Lee, Hae-Seok ;
Kim, Donghwan .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (16) :3091-3096
[2]   Temperature-assisted crystallization for inorganic CsPbI2Br perovskite solar cells to attain high stabilized efficiency 14.81% [J].
Bai, Dongliang ;
Bian, Hui ;
Jin, Zhiwen ;
Wang, Haoran ;
Meng, Lina ;
Wang, Qian ;
Liu, Shengzhong .
NANO ENERGY, 2018, 52 :408-415
[3]   SOME ASPECTS OF THE SURFACE-CHEMISTRY OF CARBON-BLACKS AND OTHER CARBONS [J].
BOEHM, HP .
CARBON, 1994, 32 (05) :759-769
[4]   Light-Induced Anion Phase Segregation in Mixed Halide Perovskites [J].
Brennan, Michael C. ;
Draguta, Sergiu ;
Kamat, Prashant V. ;
Kuno, Masaru .
ACS ENERGY LETTERS, 2018, 3 (01) :204-213
[5]   Ionic Additive Engineering Toward High-Efficiency Perovskite Solar Cells with Reduced Grain Boundaries and Trap Density [J].
Cai, Feilong ;
Yan, Yu ;
Yao, Jiaxu ;
Wang, Pang ;
Wang, Hui ;
Gurney, Robert S. ;
Liu, Dan ;
Wang, Tao .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (34)
[6]   Carbon-Based Perovskite Solar Cells without Hole Transport Materials: The Front Runner to the Market? [J].
Chen, Haining ;
Yang, Shihe .
ADVANCED MATERIALS, 2017, 29 (24)
[7]   Precise Control of Crystal Growth for Highly Efficient CsPbI2Br Perovskite Solar Cells [J].
Chen, Weijie ;
Chen, Haiyang ;
Xu, Guiying ;
Xue, Rongming ;
Wang, Shuhui ;
Li, Yaowen ;
Li, Yongfang .
JOULE, 2019, 3 (01) :191-204
[8]   Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells [J].
Domanski, Konrad ;
Correa-Baena, Juan-Pablo ;
Mine, Nicolas ;
Nazeeruddin, Mohammad Khaja ;
Abate, Antonio ;
Saliba, Michael ;
Tress, Wolfgang ;
Hagfeldt, Anders ;
Gratzel, Michael .
ACS NANO, 2016, 10 (06) :6306-6314
[9]   Anti-solvent assisted multi-step deposition for efficient and stable carbon-based CsPbI2Br all-inorganic perovskite solar cell [J].
Dong, Chen ;
Han, Xiuxun ;
Li, Wenhui ;
Qiu, Qingqing ;
Wang, Jinqing .
NANO ENERGY, 2019, 59 :553-559
[10]   Precursor Engineering for Ambient-Compatible Antisolvent-Free Fabrication of High-Efficiency CsPbI2Br Perovskite Solar Cells [J].
Duan, Chenyang ;
Cui, Jian ;
Zhang, Miaomiao ;
Han, Yu ;
Yang, Shaomin ;
Zhao, Huan ;
Bian, Hongtao ;
Yao, Jianxi ;
Zhao, Kui ;
Liu, Zhike ;
Liu, Shengzhong .
ADVANCED ENERGY MATERIALS, 2020, 10 (22)