Accelerating Biomedical Data-Intensive Applications using MapReduce

被引:2
作者
Han, Liangxiu [1 ]
Ong, Hwee Yong [2 ]
机构
[1] Manchester Metropolitan Univ, Manchester M15 6BH, Lancs, England
[2] Univ Edinburgh, Edinburgh EH8 9YL, Midlothian, Scotland
来源
2012 ACM/IEEE 13TH INTERNATIONAL CONFERENCE ON GRID COMPUTING (GRID) | 2012年
关键词
Parallel processing; MapReduce; Cloud computing; Data mining application in Biomedical Science;
D O I
10.1109/Grid.2012.24
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate how MapReduce and Cloud computing can accelerate performance of applications and scale up the computing resources through a real data mining use case in the Biomedical Sciences. We have prototyped the data mining task using the MapReduce model and evaluated it in the Cloud. A performance evaluation model has been built for assessing the eff ciency of the prototype. The results, from both experiments and the evaluation model, show the performance and scalability can be enhanced through these advanced technologies.
引用
收藏
页码:49 / 57
页数:9
相关论文
共 17 条
  • [1] [Anonymous], 1997, Parallel programming with MPI
  • [2] Atkinson MP, 2009, DADC 2009: SECOND INTERNATIONAL WORKSHOP ON DATA AWARE DISTRIBUTED COMPUTING, P11
  • [3] Cellknn, 2011, CELL KNN IMPL KNN AL
  • [4] Cindor DAGMan, 2007, CONDOR DAGMAN DIRECT
  • [5] NEAREST NEIGHBOR PATTERN CLASSIFICATION
    COVER, TM
    HART, PE
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) : 21 - +
  • [6] Dean J, 2004, USENIX ASSOCIATION PROCEEDINGS OF THE SIXTH SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION (OSDE '04), P137
  • [7] Deelman E., 2005, Scientific Programming, V13, P219
  • [8] Duda R.O., 1973, PATTERN CLASSIFCATIO
  • [9] Foster I., 2008, GRID COMP ENV WORKSH
  • [10] Gokhale M., 2008, IEEE COMPUT, V41, P60