Study of the vibrational characteristics of the homonuclear diatomic nuclear schrodinger equation with a numerov method using a number of empirical potential functions

被引:4
作者
Heidari, Alireza [1 ]
Beg, O. Anwar [2 ]
Ghorbani, Mohammadali [1 ]
机构
[1] Inst Adv Studies, Tehran 1445663543, Iran
[2] Sheffield Hallam Univ, Dept Engn & Math, Sheffield S1 1WB, S Yorkshire, England
关键词
nuclear Schrodinger equation; Numerov method; vibrational and vibration-rotation energy levels; empirical potential function; homonuclear diatomic molecule; F-2; molecule; quantum engineering; ENERGY FUNCTIONS; NUMERICAL-METHOD; MECHANICS;
D O I
10.1134/S0036024413020040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Many empirical potential energy functions have been modeled to represent the potential energy function of a diatomic molecule along whole range of internuclear distance coordinate, whereby one can determine certain molecular constants. Here we employ various potential functions such as Morse, Rydberg, Varshni(II), Varshni(III), Varshni(VI), Poschl-Teller, Hulburt-Hirschfelder, Lippincott, Frost-Musulin, Linnet, and Rosen-Morse, and the Numerov method to solve the nuclear Schrodinger equation for F2, as an example of a homonuclear diatomic molecule. Herewith, the vibrational and vibration-rotation energy levels are obtained and excellent accuracy is achieved. The potential of employing the Numerov method in engineering physics computations is emphasized.
引用
收藏
页码:216 / 224
页数:9
相关论文
共 39 条
[1]  
Acton FS., 1970, NUMERICAL METHODS WO
[2]   NEW EFFICIENT NUMERICAL-METHOD FOR SOLVING PAIR CORRELATION EQUATIONS FOR DIATOMIC-MOLECULES [J].
ADAMOWICZ, L ;
BARTLETT, RJ .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1984, 26 (02) :213-221
[3]  
[Anonymous], 1997, Quantum mechanics in chemistry
[4]   FINITE-ELEMENT APPROACH TO VIBRATIONAL SCHRODINGER EQUATION OF DIATOMIC SPECIES [J].
ARAI, H ;
KANESAKA, I ;
KAGAWA, Y .
BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1976, 49 (07) :1785-1787
[5]  
BALLENTINE L, 1990, QUANTUM MECH
[6]  
Bathe K.-J., 2006, FINITE ELEMENT PROCE
[7]  
Born M, 1927, ANN PHYS-BERLIN, V84, P0457
[8]   RENORMALIZED METHOD FOR MULTICHANNEL INHOMOGENEOUS SCHRODINGER-EQUATIONS [J].
DU, ML .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (12) :2995-2999
[9]  
Dykstra C.E., 1994, INTRO QUANTUM CHEM
[10]   Quantum engineering of nanoelectronic devices: the role of quantum confinement on mobility degradation [J].
Fairus, ATM ;
Arora, VK .
MICROELECTRONICS JOURNAL, 2001, 32 (08) :679-686