Metal 3D printing as a disruptive technology for superalloys

被引:270
作者
Panwisawas, Chinnapat [1 ,2 ]
Tang, Yuanbo T. [1 ]
Reed, Roger C. [1 ]
机构
[1] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
[2] Univ Leicester, Sch Engn, NISCO UK Res Ctr, Leicester LE1 7RH, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1038/s41467-020-16188-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
3D printing can allow for the efficient manufacturing of elaborate structures difficult to realise conventionally without waste, such as the hollow geometries of nickel-based superalloy aeronautic components. To fully exploit this method, we must move towards new alloys and processes.
引用
收藏
页数:4
相关论文
共 15 条
[1]   Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science [J].
Agrawal, Ankit ;
Choudhary, Alok .
APL MATERIALS, 2016, 4 (05)
[2]   Synthetic bone: Design by additive manufacturing [J].
Barba, D. ;
Alabort, E. ;
Reed, R. C. .
ACTA BIOMATERIALIA, 2019, 97 :637-656
[3]   A computational study on the three-dimensional printability of precipitate-strengthened nickel-based superalloys [J].
Basoalto, H. C. ;
Panwisawas, C. ;
Sovani, Y. ;
Anderson, M. J. ;
Turner, R. P. ;
Saunders, B. ;
Brooks, J. W. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2220)
[4]   Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron Beam Melting [J].
Chauvet, Edouard ;
Kontis, Paraskevas ;
Jaegle, Eric A. ;
Gault, Baptiste ;
Raabe, Dierk ;
Tassin, Catherine ;
Blandin, Jean-Jacques ;
Dendievel, Remy ;
Vayre, Benjamin ;
Abed, Stephane ;
Martin, Guilhem .
ACTA MATERIALIA, 2018, 142 :82-94
[5]   Rafting-Enabled Recovery Avoids Recrystallization in 3D-Printing-Repaired Single-Crystal Superalloys [J].
Chen, Kai ;
Huang, Runqiu ;
Li, Yao ;
Lin, Sicong ;
Zhu, Wenxin ;
Tamura, Nobumichi ;
Li, Ju ;
Shan, Zhi-Wei ;
Ma, Evan .
ADVANCED MATERIALS, 2020, 32 (12)
[6]   Microstructure of selective laser melted CM247LC nickel-based superalloy and its evolution through heat treatment [J].
Divya, V. D. ;
Munoz-Moreno, R. ;
Messe, O. M. D. M. ;
Barnard, J. S. ;
Baker, S. ;
Illston, T. ;
Stone, H. J. .
MATERIALS CHARACTERIZATION, 2016, 114 :62-74
[7]   Pore elimination mechanisms during 3D printing of metals [J].
Hojjatzadeh, S. Mohammad H. ;
Parab, Niranjan D. ;
Yan, Wentao ;
Guo, Qilin ;
Xiong, Lianghua ;
Zhao, Cang ;
Qu, Minglei ;
Escano, Luis, I ;
Xiao, Xianghui ;
Fezzaa, Kamel ;
Everhart, Wes ;
Sun, Tao ;
Chen, Lianyi .
NATURE COMMUNICATIONS, 2019, 10 (1)
[8]   In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing [J].
Leung, Chu Lun Alex ;
Marussi, Sebastian ;
Atwood, Robert C. ;
Towrie, Michael ;
Withers, Philip J. ;
Lee, Peter D. .
NATURE COMMUNICATIONS, 2018, 9
[9]   Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling [J].
Panwisawas, Chinnapat ;
Perumal, Bama ;
Ward, R. Mark ;
Turner, Nathanael ;
Turner, Richard P. ;
Brooks, Jeffery W. ;
Basoalto, Hector C. .
ACTA MATERIALIA, 2017, 126 :251-263
[10]   Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing [J].
Raplee, J. ;
Plotkowski, A. ;
Kirka, M. M. ;
Dinwiddie, R. ;
Okello, A. ;
Dehoff, R. R. ;
Babu, S. S. .
SCIENTIFIC REPORTS, 2017, 7