Solitons in a nonlinear Schrodinger equation with PT-symmetric potentials and inhomogeneous nonlinearity: Stability and excitation of nonlinear modes

被引:86
作者
Yan, Zhenya [1 ]
Wen, Zichao [1 ]
Konotop, Vladimir V. [2 ,3 ]
机构
[1] Chinese Acad Sci, AMSS, Inst Syst Sci, Key Lab Math Mechanizat, Beijing 100190, Peoples R China
[2] Univ Lisbon, Ctr Fis Teor & Computac, P-1749016 Lisbon, Portugal
[3] Univ Lisbon, Dept Fis, Fac Ciencias, P-1749016 Lisbon, Portugal
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 02期
关键词
REAL;
D O I
10.1103/PhysRevA.92.023821
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report branches of explicit expressions for nonlinear modes in parity-time (PT)-symmetric potentials of several types. For the single-well and double-well potentials the found solutions are two-parametric and appear to be stable even when the PT symmetry of respective underlying linear models is broken. Based on the examples of these solutions we describe an algorithm of excitation of a stable nonlinear mode in a model whose linear limit is unstable. The method is based on the adiabatic change of the control parameter driving the mode along a branch bifurcating from a stable linear mode. The suggested algorithm is confirmed by extensive numerical simulations.
引用
收藏
页数:8
相关论文
共 39 条
[1]   Dissipative periodic waves, solitons, and breathers of the nonlinear Schrodinger equation with complex potentials [J].
Abdullaev, F. Kh. ;
Konotop, V. V. ;
Salerno, M. ;
Yulin, A. V. .
PHYSICAL REVIEW E, 2010, 82 (05)
[2]   Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential (vol A282, pg 343, 2001) [J].
Ahmed, Z .
PHYSICS LETTERS A, 2001, 287 (3-4) :295-296
[3]   Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential [J].
Ahmed, Z .
PHYSICS LETTERS A, 2001, 282 (06) :343-348
[4]   Controlling the Dynamics of an Open Many-Body Quantum System with Localized Dissipation [J].
Barontini, G. ;
Labouvie, R. ;
Stubenrauch, F. ;
Vogler, A. ;
Guarrera, V. ;
Ott, H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (03)
[5]   Localized nonlinear waves in systems with time- and space-modulated nonlinearities [J].
Belmonte-Beitia, Juan ;
Perez-Garcia, Victor M. ;
Vekslerchik, Vadym ;
Konotop, Vladimir V. .
PHYSICAL REVIEW LETTERS, 2008, 100 (16)
[6]   Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities [J].
Belmonte-Beitia, Juan ;
Perez-Garcia, Victor M. ;
Vekslerchik, Vadym ;
Torres, Pedro J. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[7]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[8]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[9]   Dynamics of inhomogeneous condensates in contact with a surface [J].
Bludov, Yu. V. ;
Yan, Zhenya ;
Konotop, V. V. .
PHYSICAL REVIEW A, 2010, 81 (06)
[10]   Model of a PT-symmetric Bose-Einstein condensate in a δ-function double-well potential [J].
Cartarius, Holger ;
Wunner, Guenter .
PHYSICAL REVIEW A, 2012, 86 (01)