Selberg trace formula in hyperbolic band theory

被引:23
作者
Attar, Adil [1 ]
Boettcher, Igor [1 ,2 ]
机构
[1] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada
[2] Univ Alberta, Inst Theoret Phys, Edmonton, AB T6G 2E1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
PERIODIC-ORBITS; CHAOS; SURFACES; SPACE;
D O I
10.1103/PhysRevE.106.034114
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We apply Selberg's trace formula to solve problems in hyperbolic band theory, a recently developed extension of Bloch theory to model band structures on experimentally realized hyperbolic lattices. For this purpose we incorporate the higher-dimensional crystal momentum into the trace formula and evaluate the summation for periodic orbits on the Bolza surface of genus two. We apply the technique to compute partition functions on the Bolza surface and propose an approximate relation between the lowest bands on the Bolza surface and on the {8, 3} hyperbolic lattice. We discuss the role of automorphism symmetry and its manifestation in the trace formula.
引用
收藏
页数:23
相关论文
共 73 条
  • [1] Anosov D.V., 1969, Geodesic flows on closed Riemann manifold with negative curvature, V90
  • [2] Holography on tessellations of hyperbolic space
    Asaduzzaman, Muhammad
    Catterall, Simon
    Hubisz, Jay
    Nelson, Roice
    Unmuth-Yockey, Judah
    [J]. PHYSICAL REVIEW D, 2020, 102 (03):
  • [3] Ashcroft N.W, 1976, SOLID STATE PHYS
  • [4] NOVEL RULE FOR QUANTIZING CHAOS
    AURICH, R
    MATTHIES, C
    SIEBER, M
    STEINER, F
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (11) : 1629 - 1632
  • [5] QUANTUM CHAOS OF THE HADAMARD-GUTZWILLER MODEL
    AURICH, R
    SIEBER, M
    STEINER, F
    [J]. PHYSICAL REVIEW LETTERS, 1988, 61 (05) : 483 - 487
  • [6] PERIODIC-ORBIT SUM-RULES FOR THE HADAMARD-GUTZWILLER MODEL
    AURICH, R
    STEINER, F
    [J]. PHYSICA D, 1989, 39 (2-3): : 169 - 193
  • [7] PERIODIC-ORBITS ON THE REGULAR HYPERBOLIC OCTAGON
    AURICH, R
    BOGOMOLNY, EB
    STEINER, F
    [J]. PHYSICA D, 1991, 48 (01): : 91 - 101
  • [8] ON THE PERIODIC-ORBITS OF A STRONGLY CHAOTIC SYSTEM
    AURICH, R
    STEINER, F
    [J]. PHYSICA D, 1988, 32 (03): : 451 - 460
  • [9] CHAOS ON THE PSEUDOSPHERE
    BALAZS, NL
    VOROS, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1986, 143 (03): : 109 - 240
  • [10] Bass H., 1992, Internat. J. Math., V3, P717, DOI DOI 10.1142/S0129167X92000357