A numerical study of divergence-free kernel approximations

被引:5
|
作者
Mitrano, Arthur A. [1 ]
Platte, Rodrigo B. [1 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85281 USA
关键词
Radial basis functions; Divergence-free; Finite-differences; Spectral methods; RADIAL BASIS FUNCTIONS; BASIS FUNCTION INTERPOLATION; FREE RBF INTERPOLANTS; MULTIVARIATE INTERPOLATION; ANALYTIC-FUNCTIONS; POLYNOMIALS; SPHERE; ERROR; LIMIT;
D O I
10.1016/j.apnum.2015.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Approximation properties of divergence-free vector fields by global and local solenoidal bases are studied. A comparison between interpolants generated with radial kernels and multivariate polynomials is presented. Numerical results show higher rates of convergence for derivatives of the vector field being approximated in directions enforced by the divergence operator when a rectangular grid is used. We also compute the growth of Lebesgue constants for uniform and clustered nodes and study the flat limit of divergence-free interpolants based on radial kernels. Numerical results are presented for two- and three-dimensional vector fields. (C) 2015 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:94 / 107
页数:14
相关论文
共 50 条
  • [1] SPECTRAL REPRESENTATIONS, AND APPROXIMATIONS, OF DIVERGENCE-FREE VECTOR FIELDS
    Auchmuty, Giles
    Simpkins, Douglas R.
    QUARTERLY OF APPLIED MATHEMATICS, 2016, 74 (03) : 429 - 441
  • [2] DIVERGENCE-FREE KERNEL METHODS FOR APPROXIMATING THE STOKES PROBLEM
    Wendland, Holger
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) : 3158 - 3179
  • [3] Numerical Algorithms for Divergence-Free Velocity Applications
    Barbi, Giacomo
    Cervone, Antonio
    Manservisi, Sandro
    MATHEMATICS, 2024, 12 (16)
  • [4] Stokes elements on cubic meshes yielding divergence-free approximations
    Neilan, Michael
    Sap, Duygu
    CALCOLO, 2016, 53 (03) : 263 - 283
  • [5] Stokes elements on cubic meshes yielding divergence-free approximations
    Michael Neilan
    Duygu Sap
    Calcolo, 2016, 53 : 263 - 283
  • [6] Statistical learning for fluid flows: Sparse Fourier divergence-free approximations
    Espath, Luis
    Kabanov, Dmitry
    Kiessling, Jonas
    Tempone, Raul
    PHYSICS OF FLUIDS, 2021, 33 (09)
  • [7] Discontinuous Galerkin methods for the Stokes equations using divergence-free approximations
    Montlaur, A.
    Fernandez-Mendez, S.
    Huerta, A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 57 (09) : 1071 - 1092
  • [8] On divergence-free drifts
    Seregin, Gregory
    Silvestre, Luis
    Sverak, Vladimir
    Zlatos, Andrej
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (01) : 505 - 540
  • [9] DIRECT NUMERICAL SIMULATION OF TURBULENCE USING DIVERGENCE-FREE WAVELETS
    Deriaz, Erwan
    Perrier, Valerie
    MULTISCALE MODELING & SIMULATION, 2008, 7 (03): : 1101 - 1129
  • [10] On interpolatory divergence-free wavelets
    Bittner, Kai
    Urban, Karsten
    MATHEMATICS OF COMPUTATION, 2007, 76 (258) : 903 - 929