Necessary and Sufficient Stability Criteria for a Class of Fractional-Order Delayed Systems

被引:32
作者
Hua, Chang-Chun [1 ]
Liu, Dan [1 ]
Guan, Xin-Ping [1 ,2 ]
机构
[1] Yanshan Univ, Inst Elect & Elect Engn, Qinhuangdao 066004, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Dept Automat, Shanghai 200240, Peoples R China
基金
国家教育部博士点专项基金资助; 中国国家自然科学基金;
关键词
Delay stability region; fractional-order systems; integral-order systems; system transformation;
D O I
10.1109/TCSII.2013.2291137
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new method for the stability analysis of a large class of fractional-order delayed systems is proposed. The exact region of the delay that can stabilize the system is determined without any approximation. Two steps of system transformation are employed to switch the fractional characteristic function to its corresponding integral function and to achieve an algebraic equation that facilitates the computation. Finally, an example is given to prove the feasibility of the proposed method.
引用
收藏
页码:59 / 63
页数:5
相关论文
共 23 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]  
Bellman R.E., 1963, Differential-Difference Equations, V6
[3]   Stability and Stabilization of a Class of Nonlinear Fractional-Order Systems With Caputo Derivative [J].
Chen, Liping ;
Chai, Yi ;
Wu, Ranchao ;
Yang, Jing .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2012, 59 (09) :602-606
[4]   Fractional Order Systems in Industrial Automation-A Survey [J].
Efe, Mehmet Onder .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2011, 7 (04) :582-591
[5]   Robust stability criterion of fractional-order functions for interval fractional-order systems [J].
Gao, Zhe ;
Liao, Xiaozhong .
IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (01) :60-67
[6]   Stabilization using fractional-order PI and PID controllers [J].
Hamamci, Serdar E. .
NONLINEAR DYNAMICS, 2008, 51 (1-2) :329-343
[7]   A numerical algorithm for stability testing of fractional delay systerns [J].
Hwang, C ;
Cheng, YC .
AUTOMATICA, 2006, 42 (05) :825-831
[8]  
Jia H., 2007, P IEEE POW ENG SOC G, P1
[9]   Recent history of fractional calculus [J].
Machado, J. Tenreiro ;
Kiryakova, Virginia ;
Mainardi, Francesco .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (03) :1140-1153
[10]   Extension of the root-locus method to a certain class of fractional-order systems [J].
Merrikh-Bayat, Farshad ;
Afshar, Mahdi ;
Karimi-Ghartemani, Masoud .
ISA TRANSACTIONS, 2009, 48 (01) :48-53