Pseudo-fermions in an Electronic Loss-Gain Circuit

被引:3
作者
Bagarello, F. [1 ]
Pantano, G. [2 ]
机构
[1] Univ Palermo, Fac Ingn, Dipartimento Energia Ingn Informaz & Modelli Mate, I-90128 Palermo, Italy
[2] Univ Palermo, Fac Ingn, I-90128 Palermo, Italy
关键词
Pseudo-fermions; Deformed CAR; ISOSPECTRAL POTENTIALS;
D O I
10.1007/s10773-013-1769-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In some recent papers a loss-gain electronic circuit has been introduced and analyzed within the context of PT-quantum mechanics. In this paper we show that this circuit can be analyzed using the formalism of the so-called pseudo-fermions. In particular we discuss the time behavior of the circuit, and we construct two biorthogonal bases associated to the Liouville matrix used in the treatment of the dynamics. We relate these bases to and , and we also show that a self-adjoint Liouville-like operator could be introduced in the game. Finally, we describe the time evolution of the circuit in an Heisenberg-like representation, driven by a non self-adjoint Hamiltonian.
引用
收藏
页码:4507 / 4518
页数:12
相关论文
共 8 条
  • [1] More mathematics for pseudo-bosons
    Bagarello, F.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (06)
  • [2] Linear pseudo-fermions
    Bagarello, F.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (44)
  • [3] Two families of superintegrable and isospectral potentials in two dimensions
    Demircioglu, B
    Kuru, S
    Önder, M
    Verçin, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (05) : 2133 - 2150
  • [4] Classical limit of non-Hermitian quantum dynamics-a generalized canonical structure
    Graefe, Eva-Maria
    Hoening, Michael
    Korsch, Hans Juergen
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (07)
  • [5] Intertwined isospectral potentials in an arbitrary dimension
    Kuru, S
    Tegmen, A
    Verçin, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (08) : 3344 - 3360
  • [6] Bypassing the bandwidth theorem with PT symmetry
    Ramezani, Hamidreza
    Schindler, J.
    Ellis, F. M.
    Guenther, Uwe
    Kottos, Tsampikos
    [J]. PHYSICAL REVIEW A, 2012, 85 (06):
  • [7] Intertwined Hamiltonians in two-dimensional curved spaces
    Samani, KA
    Zarei, M
    [J]. ANNALS OF PHYSICS, 2005, 316 (02) : 466 - 482
  • [8] Experimental study of active LRC circuits with PT symmetries
    Schindler, Joseph
    Li, Ang
    Zheng, Mei C.
    Ellis, F. M.
    Kottos, Tsampikos
    [J]. PHYSICAL REVIEW A, 2011, 84 (04):