Modeling Software Rejuvenation on a Redundant System Using Monte Carlo Simulation

被引:6
|
作者
Malefaki, Sonia [1 ]
Koutras, Vasilis P. [2 ]
Platis, Agapios N. [2 ]
机构
[1] Univ Patras, Dept Engn Sci, GR-26500 Rion, Greece
[2] Univ Aegean, Dept Financial & Management Engn, GR-82100 Chios, Greece
关键词
redundant system; rejuvenation; Monte Carlo simulation; availability; reliability; downtime cost;
D O I
10.1109/ISSREW.2012.89
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, rejuvenation is modeled in a redundant computer system in order to counteract software aging. The evolution of such a system in time could be modeled by a Markov or a semi-Markov process. Nevertheless, due to generally distributed repair times of system components, the entire system is non-Markovian. Thus, Monte Carlo simulation methods are used for studying system's evolution in time. Through this approach, the main dependability and performance measures are computed in order to ascertain the efficiency of software rejuvenation.
引用
收藏
页码:277 / 282
页数:6
相关论文
共 50 条
  • [31] DAREUS Software Package for Modeling the Dynamics of Solution Reactors Using the Monte Carlo Method
    Gomin, E. A.
    Davidenko, V. D.
    Davidenko, O. V.
    Kovalishin, A. A.
    Laletin, M. N.
    Pavlov, A. K.
    PHYSICS OF ATOMIC NUCLEI, 2018, 81 (08) : 1180 - 1186
  • [32] MODELING FOR AN ALGAAS/GAAS HETEROSTRUCTURE DEVICE USING MONTE-CARLO SIMULATION
    TOMIZAWA, M
    YOSHII, A
    YOKOYAMA, K
    IEEE ELECTRON DEVICE LETTERS, 1985, 6 (07) : 332 - 334
  • [33] Monte Carlo Modeling and Simulation of the Varian TrueBeam LINAC Using Heterogeneous Computing
    Lin, H.
    Liu, T.
    Su, L.
    Shi, C.
    Tang, X.
    Adam, D.
    Bednarz, B.
    Xu, X.
    MEDICAL PHYSICS, 2017, 44 (06) : 3003 - 3003
  • [34] Modeling of Light Propagation in Turbid Medium Using Monte Carlo Simulation Technique
    Atif, M.
    Khan, A.
    Ikram, M.
    OPTICS AND SPECTROSCOPY, 2011, 111 (01) : 107 - 112
  • [35] Modeling of light propagation in turbid medium using Monte Carlo simulation technique
    M. Atif
    A. Khan
    M. Ikram
    Optics and Spectroscopy, 2011, 111 : 107 - 112
  • [36] Performance characteristics of NeuroPET system using GATE Monte Carlo simulation
    Sheikhzadeh, P.
    Sabet, H.
    Ghadiri, H.
    Geramifar, P.
    Mahani, H.
    Ghafarian, P.
    Ay, M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2016, 43 : S512 - S513
  • [37] Reliability Compliant Distribution System Planning Using Monte Carlo Simulation
    Battu, Neelakanteshwar Rao
    Abhyankar, Abhijit R.
    Senroy, Nilanjan
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2019, 47 (11-12) : 985 - 997
  • [38] Modeling of Unsteady Shock Tube Flows Using Direct Simulation Monte Carlo
    Zhu, Tong
    Li, Zheng
    Levin, Deborah A.
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2014, 28 (04) : 623 - 634
  • [39] Modeling low-coherence enhanced backscattering using Monte Carlo simulation
    Subramanian, Hariharan
    Pradhan, Prabhakar
    Kim, Young L.
    Liu, Yang
    Li, Xu
    Backman, Vadim
    APPLIED OPTICS, 2006, 45 (24) : 6292 - 6300
  • [40] Numerical modeling of micromechanical devices using the direct simulation Monte Carlo method
    MIT, Cambridge, United States
    J Fluids Eng Trans ASME, 3 (464-468):