Optimization of Pathogen Capture in Flowing Fluids with Magnetic Nanoparticles

被引:34
作者
Kang, Joo H. [1 ,2 ]
Um, Eujin [3 ]
Diaz, Alexander [1 ]
Driscoll, Harry [1 ]
Rodas, Melissa J. [1 ]
Domansky, Karel [1 ]
Watters, Alexander L. [1 ]
Super, Michael [1 ]
Stone, Howard A. [3 ]
Ingber, Donald E. [1 ,2 ,4 ,5 ]
机构
[1] Harvard Univ, Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02139 USA
[3] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[4] Boston Childrens Hosp, Vasc Biol Program, Boston, MA 02115 USA
[5] Harvard Univ, Sch Med, Boston, MA 02115 USA
关键词
BINDING; SEPARATION; FORCE; FIELD; IMMUNOASSAY; MODEL;
D O I
10.1002/smll.201501820
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Magnetic nanoparticles have been employed to capture pathogens for many biological applications; however, optimal particle sizes have been determined empirically in specific capturing protocols. Here, a theoretical model that simulates capture of bacteria is described and used to calculate bacterial collision frequencies and magnetophoretic properties for a range of particle sizes. The model predicts that particles with a diameter of 460 nm should produce optimal separation of bacteria in buffer flowing at 1 L h(-1). Validating the predictive power of the model, Staphylococcus aureus is separated from buffer and blood flowing through magnetic capture devices using six different sizes of magnetic particles. Experimental magnetic separation in buffer conditions confirms that particles with a diameter closest to the predicted optimal particle size provide the most effective capture. Modeling the capturing process in plasma and blood by introducing empirical constants (c(e)), which integrate the interfering effects of biological components on the binding kinetics of magnetic beads to bacteria, smaller beads with 50 nm diameters are predicted that exhibit maximum magnetic separation of bacteria from blood and experimentally validated this trend. The predictive power of the model suggests its utility for the future design of magnetic separation for diagnostic and therapeutic applications.
引用
收藏
页码:5657 / 5666
页数:10
相关论文
共 35 条
[1]   Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care [J].
Angus, DC ;
Linde-Zwirble, WT ;
Lidicker, J ;
Clermont, G ;
Carcillo, J ;
Pinsky, MR .
CRITICAL CARE MEDICINE, 2001, 29 (07) :1303-1310
[2]   Modelling immunomagnetic cell capture in CFD [J].
Baier, Tobias ;
Mohanty, Swati ;
Drese, Klaus S. ;
Rampf, Federica ;
Kim, Jungtae ;
Schoenfeld, Friedhelm .
MICROFLUIDICS AND NANOFLUIDICS, 2009, 7 (02) :205-216
[3]  
Batchelor G. K., 2000, An Introduction to Fluid Dynamics M
[4]   Measuring two-dimensional receptor-ligand binding kinetics by micropipette [J].
Chesla, SE ;
Selvaraj, P ;
Zhu, C .
BIOPHYSICAL JOURNAL, 1998, 75 (03) :1553-1572
[5]   High and Increasing Oxa-51 DNA Load Predict Mortality in Acinetobacter baumannii Bacteremia: Implication for Pathogenesis and Evaluation of Therapy [J].
Chuang, Yu-Chung ;
Chang, Shan-Chwen ;
Wang, Wei-Kung .
PLOS ONE, 2010, 5 (11)
[6]   A microdevice for rapid optical detection of magnetically captured rare blood pathogens [J].
Cooper, Ryan M. ;
Leslie, Daniel C. ;
Domansky, Karel ;
Jain, Abhishek ;
Yung, Chong ;
Cho, Michael ;
Workman, Sam ;
Super, Michael ;
Ingber, Donald E. .
LAB ON A CHIP, 2014, 14 (01) :182-188
[7]  
Dellinger RP, 2008, INTENS CARE MED, V34, P17, DOI [10.1097/01.CCM.0000298158.12101.41, 10.1007/s00134-008-1040-9]
[8]  
Elimelech M., 1998, Particle deposition aggregation, measurement, modeling and simulation, DOI 10.1016/B978-0-7506-7024-1.X5000-6
[9]   Analytical model for the magnetic field and force in a magnetophoretic microsystem [J].
Furlani, EP ;
Sahoo, Y .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2006, 39 (09) :1724-1732
[10]   Magnetophoretic immunoassay of allergen-specific IgE in an enhanced magnetic field gradient [J].
Hahn, Young Ki ;
Jin, Zongwen ;
Kang, Joo H. ;
Oh, Eunkeu ;
Han, Min-Kyu ;
Kim, Hak-Sung ;
Jang, Jung-Tak ;
Lee, Jae-Hyun ;
Cheon, Jinwoo ;
Kim, Seung Hyun ;
Park, Hae-Sim ;
Park, Je-Kyun .
ANALYTICAL CHEMISTRY, 2007, 79 (06) :2214-2220