Nanofibrous membranes containing carbon nanotubes: Electrospun for redox enzyme immobilization

被引:58
作者
Wang, ZG
Xu, ZK [1 ]
Wan, LS
Wu, J
Innocent, C
Seta, P
机构
[1] Zhejiang Univ, Minist Educ, Inst Polymer Sci, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Minist Educ, Key Lab Macromol Synth & Funct, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China
[4] CNRS, UMR 5635, Inst Europee Membranes, F-34293 Montpellier 05, France
关键词
carbon nanotubes; catalase; electrospinning; enzyme immobilization; enzymes; membranes; nanofibrous membranes; poly(acrylonitrile-co-acrylic acid);
D O I
10.1002/marc.200500885
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Nanofibrous membranes that possess reactive groups are fabricated by the electrospinning process from PANCAA solutions that contain MWCNTs. Field emission scanning electron microscopy is used to evaluate the morphology and diameter of the nanofibers. Potentials for applying these nanofibrous membranes to immobilize redox enzymes by covalent bonding are explored. It is envisaged that the electrospun nanofibrous membranes Could provide a large specific area and the MWCNTs could donate/accept electrons for the immobilized redox enzymes. Results indicate that, after blending with MWCNTs, the diameter of the PANCAA nanofiber increases slightly. The PANCAA/MWCNT nanofibrous membranes immobilize more enzymes than that without MWCNTs. Moreover, as the concentration of the MWCNTs increases, the activity of the immobilized catalase is enhanced by about 42%, which is mainly attributed to the promoted electron transfer through charge-transfer complexes and the pi system of MWCNTs.
引用
收藏
页码:516 / 521
页数:6
相关论文
共 48 条
[1]   Tunable, superhydrophobically stable polymeric surfaces by electrospinning [J].
Acatay, K ;
Simsek, E ;
Ow-Yang, C ;
Menceloglu, YZ .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (39) :5210-5213
[2]  
Bognitzki M, 2001, ADV MATER, V13, P70, DOI 10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.0.CO
[3]  
2-H
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization [J].
Chen, RJ ;
Zhang, YG ;
Wang, DW ;
Dai, HJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (16) :3838-3839
[6]   Chemical and biochemical sensing with modified single walled carbon nanotubes [J].
Davis, JJ ;
Coleman, KS ;
Azamian, BR ;
Bagshaw, CB ;
Green, MLH .
CHEMISTRY-A EUROPEAN JOURNAL, 2003, 9 (16) :3732-3739
[7]   Palladium nanoparticles by electrospinning from poly(acrylonitrile-co-acrylic acid)-PdCl2 solutions.: Relations between preparation conditions, particle size, and catalytic activity [J].
Demir, MM ;
Gulgun, MA ;
Menceloglu, YZ ;
Erman, B ;
Abramchuk, SS ;
Makhaeva, EE ;
Khokhlov, AR ;
Matveeva, VG ;
Sulman, MG .
MACROMOLECULES, 2004, 37 (05) :1787-1792
[8]  
DOSHI J, 1995, J ELECTROSTAT, V35, P151, DOI 10.1016/0304-3886(95)00041-8
[9]   Spinning continuous fibers for nanotechnology [J].
Dzenis, Y .
SCIENCE, 2004, 304 (5679) :1917-1919
[10]   Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yams [J].
Fennessey, SF ;
Farris, RJ .
POLYMER, 2004, 45 (12) :4217-4225