Pt-Au/nitrogen-doped graphene nanocomposites for enhanced electrochemical activities

被引:119
作者
Yang, Guohai [1 ]
Li, Yongjie [1 ]
Rana, Rohit Kumar [2 ]
Zhu, Jun-Jie [1 ]
机构
[1] Nanjing Univ, Sch Chem & Chem Engn, State Key Lab Analyt Chem Life Sci, Nanjing 210093, Jiangsu, Peoples R China
[2] CSIR Indian Inst Chem Technol, Nanomat Lab, Inorgan & Phys Chem Div, Hyderabad 500607, Andhra Pradesh, India
基金
中国国家自然科学基金;
关键词
OXYGEN REDUCTION REACTION; TEMPERATURE FUEL-CELLS; ALLOY NANOPARTICLES; METHANOL OXIDATION; CATALYTIC-ACTIVITY; ETHANOL OXIDATION; HYDROGEN-PEROXIDE; CARBON NANOTUBES; AU NANOPARTICLES; NITROGEN;
D O I
10.1039/c2ta00776b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A facile in situ assembly strategy was developed for the fabrication of Pt-Au alloy nanoparticles (NPs) on nitrogen-doped graphene (N-G) sheets, and the as-fabricated Pt-Au/N-G nanocomposites were suitable for electrochemical applications. As characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction analysis and inductively coupled plasma-atomic emission spectroscopy techniques, Pt-Au alloy NPs with an average size of 4-5 nm were uniformly distributed on the N-G surface through intrinsic covalent bonds. The Pt-Au/N-G nanocomposites exhibited excellent electrocatalytic activity and stability towards the methanol oxidation reaction with the highest capability observed for a Pt/Au atomic ratio of 3/1. The unique electrochemical features are distinctive from those of N-free nanocomposites and commercially available Pt/C catalysts, indicative of the alloying effect of Pt-Au and their synergistic interaction with the N-G sheet, which may open up new possibilities for the preparation of N-G-based nanocomposites for other intensive applications as well.
引用
收藏
页码:1754 / 1762
页数:9
相关论文
共 69 条
[1]   Electrochemistry at Chemically Modified Graphenes [J].
Ambrosi, Adriano ;
Bonanni, Alessandra ;
Sofer, Zdenek ;
Cross, Jeffrey S. ;
Pumera, Martin .
CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (38) :10763-10770
[2]   Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction [J].
Bing, Yonghong ;
Liu, Hansan ;
Zhang, Lei ;
Ghosh, Dave ;
Zhang, Jiujun .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (06) :2184-2202
[3]   Nitrogen-Doped Graphene/ZnSe Nanocomposites: Hydrothermal Synthesis and Their Enhanced Electrochemical and Photocatalytic Activities [J].
Chen, Ping ;
Xiao, Tian-Yuan ;
Li, Hui-Hui ;
Yang, Jing-Jing ;
Wang, Zheng ;
Yao, Hong-Bin ;
Yu, Shu-Hong .
ACS NANO, 2012, 6 (01) :712-719
[4]   Nanostructured Polyaniline-Decorated Pt/C@PANI Core-Shell Catalyst with Enhanced Durability and Activity [J].
Chen, Siguo ;
Wei, Zidong ;
Qi, XueQiang ;
Dong, Lichun ;
Guo, Yu-Guo ;
Wan, Lijun ;
Shao, Zhigang ;
Li, Li .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (32) :13252-13255
[5]   Synthesis of "Clean" and Well-Dispersive Pd Nanoparticles with Excellent Electrocatalytic Property on Graphene Oxide [J].
Chen, Xiaomei ;
Wu, Genghuang ;
Chen, Jinmei ;
Chen, Xi ;
Xie, Zhaoxiong ;
Wang, Xiaoru .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (11) :3693-3695
[6]   Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions [J].
Chen, Zhongwei ;
Waje, Mahesh ;
Li, Wenzhen ;
Yan, Yushan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (22) :4060-4063
[7]   Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells [J].
Chen, Zhu ;
Higgins, Drew ;
Chen, Zhongwei .
CARBON, 2010, 48 (11) :3057-3065
[8]   Highly active Pt@Au nanoparticles encapsulated in perfluorosulfonic acid for the reduction of oxygen [J].
Cheng, Niancai ;
Li, Huaiguang ;
Li, Guoqiang ;
Lv, Haifeng ;
Mu, Shichun ;
Sun, Xueliang ;
Pan, Mu .
CHEMICAL COMMUNICATIONS, 2011, 47 (48) :12792-12794
[9]   Programmable peptide-directed two dimensional arrays of various nanoparticles on graphene sheets [J].
Choi, Bong Gill ;
Yang, Min Ho ;
Park, Tae Jung ;
Huh, Yun Suk ;
Lee, Sang Yup ;
Hong, Won Hi ;
Park, HoSeok .
NANOSCALE, 2011, 3 (08) :3208-3213
[10]   The Beneficial Role of the Cometals Pd and Au in the Carbon-Supported PtPdAu Catalyst Toward Promoting Ethanol Oxidation Kinetics in Alkaline Fuel Cells: Temperature Effect and Reaction Mechanism [J].
Datta, Jayati ;
Dutta, Abhijit ;
Mukherjee, Sanjeev .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (31) :15324-15334