Non-resonant boundary value problems with singular -Laplacian operators

被引:0
作者
Bereanu, Cristian [1 ]
Gheorghe, Dana [1 ,2 ]
Zamora, Manuel [3 ]
机构
[1] Acad Romana, Inst Math Simion Stoilow, Bucharest 010702, Romania
[2] Mil Tech Acad, Bucharest 050141, Romania
[3] Univ Granada, Dept Matemat Aplicada, E-18071 Granada, Spain
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2013年 / 20卷 / 03期
关键词
phi-Laplacian; Periodic solutions; Weak singularities; Leray-Schauder degree; Upper and lower solutions; Lower semicontinuous functionals; Mountain Pass Theorem; PERIODIC-SOLUTIONS; DIFFERENTIAL-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; SYSTEMS;
D O I
10.1007/s00030-012-0212-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using Leray-Schauder degree arguments, critical point theory for lower semicontinuous functionals and the method of lower and upper solutions, we give existence results for periodic problems involving the relativistic operator u bart right arrow (u'/root 1-u'2)' + r(t)u with integral(T)(0) r dt not equal 0. In particular we show that in this case we have non-resonance, that is periodic problem (u'/root 1-u'2)' + r(t)u = e(t), u(0) - u(T) = 0 = u'(0) - u'(T), has at least one solution for any continuous function e : left perpendicular0, Tright perpendicular -> R. Then, we consider Brillouin and Mathieu-Duffing type equations for which r(t) equivalent to b(1) + b(2) cos t and b(1), b(2) is an element of R.
引用
收藏
页码:1365 / 1377
页数:13
相关论文
共 14 条