Simpson's Rule and Hermite-Hadamard Inequality for Non-Convex Functions

被引:3
作者
Simic, Slavko [1 ,2 ]
Bin-Mohsin, Bandar [3 ]
机构
[1] Ton Duc Thang Univ, Nonlinear Anal Res Grp, Ho Chi Minh City 758307, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City 758307, Vietnam
[3] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
关键词
hermite-hadamard integral inequality; twice differentiable functions; convex functions;
D O I
10.3390/math8081248
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we give a variant of the Hermite-Hadamard integral inequality for twice differentiable functions. It represents an improvement of this inequality in the case of convex/concave functions. Sharp two-sided inequalities for Simpson's rule are also proven along with several extensions.
引用
收藏
页数:10
相关论文
共 7 条
[1]   SHARP BOUNDS ON THE SINC FUNCTION VIA THE FOURIER SERIES METHOD [J].
Bercu, Gabriel .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (02) :495-504
[2]   Hermite-Hadamard's trapezoid and mid-point type inequalities on a disk [J].
Delavar, M. Rostamian ;
Dragomir, S. S. ;
De La Sen, M. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
[3]  
Hardy G.H., 1978, INEQUALITIES
[4]  
Niculescu C. P., 2004, Real Anal. Exch., V29, P663, DOI [10.14321/realanalexch.29.2.0663, DOI 10.14321/REALANALEXCH.29.2.0663]
[5]   SOME REFINEMENTS OF HERMITE-HADAMARD INEQUALITY AND AN OPEN PROBLEM [J].
Simic, Slavko .
KRAGUJEVAC JOURNAL OF MATHEMATICS, 2018, 42 (03) :349-356
[6]  
Simic S, 2016, KRAGUJEV J MATH, V40, P166
[7]  
Ueberhuber C.W., 1997, NUMERICAL COMPUTATIO