Multiple solutions to the nonhomogeneous p-Kirchhoff elliptic equation with concave-convex nonlinearities

被引:33
作者
Chen, Caisheng [1 ]
Huang, Jincheng [1 ]
Liu, Lihua [1 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
关键词
p-Kirchhoff elliptic equation; Mountain Pass Theorem; Ekeland's variational principle; Multiple solutions;
D O I
10.1016/j.aml.2013.02.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the multiplicity of solutions for the nonhomogeneous p-Kirchhoff elliptic equation -M(parallel to del u parallel to(p)(p))Delta(p)u = lambda h(1)(x)vertical bar u vertical bar(q-2)u + h(2)(x)vertical bar u vertical bar(r-2)u + h(3)(x), x is an element of Omega, (0.1) with zero Dirichlet boundary condition on partial derivative Omega, where Omega is the complement of a smooth bounded domain D in R-N (N >= 3). lambda > 0, M(s) = a + bs(k), a, b > 0, k >= 0, h(1)(x), h(2)(x) and h(3)(x) are continuous functions which may change sign on Omega. The parameters p, q, r satisfy 1 < q < p(k + 1) < r < p* = Np/N-p. A new existence result for multiple solutions is obtained by the Mountain Pass Theorem and Ekeland's variational principle. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:754 / 759
页数:6
相关论文
共 11 条
[1]   A remark on the existence and multiplicity result for a nonlinear elliptic problem involving the p-Laplacian [J].
Afrouzi, G. A. ;
Rasouli, S. H. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2009, 16 (06) :717-730
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
Brown KJ, 2009, DIFFER INTEGRAL EQU, V22, P1097
[4]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[5]   The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions [J].
Chen, Ching-yu ;
Kuo, Yueh-cheng ;
Wu, Tsung-fang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (04) :1876-1908
[6]   On multiple solutions of a singular quasilinear equation on unbounded domain [J].
Chen, JQ ;
Li, SJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 275 (02) :733-746
[7]   On a p-Kirchhoff equation via Krasnoselskii's genus [J].
Correa, Francisco Julio S. A. ;
Figueiredo, Giovany M. .
APPLIED MATHEMATICS LETTERS, 2009, 22 (06) :819-822
[8]   Existence of a positive solution to Kirchhoff type problems without compactness conditions [J].
Li, Yuhua ;
Li, Fuyi ;
Shi, Junping .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (07) :2285-2294
[9]   Multiple nontrivial solutions to a p-Kirchhoff equation [J].
Liu, Duchao ;
Zhao, Peihao .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) :5032-5038
[10]  
Struwe M., 2000, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, V3