Topological insulators with commensurate antiferromagnetism

被引:93
作者
Fang, Chen [1 ,2 ]
Gilbert, Matthew J. [3 ,4 ]
Bernevig, B. Andrei [2 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Micro & Nanotechnol Lab, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
CRYSTALLINE INSULATOR; PHASE-TRANSITION; REALIZATION; SYMMETRY;
D O I
10.1103/PhysRevB.88.085406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the topological features of noninteracting insulators subject to an antiferromangetic (AFM) Zeeman field, or AFM insulators, the period of which is commensurate with the lattice period. These insulators can be classified by the presence/absence of an emergent antiunitary symmetry: the combined operation of time reversal and a lattice translation by vector D. For AFM insulators that preserve this combined symmetry, regardless of any details in lattice structure or magnetic structure, we show that (i) there is a new type of Kramers' degeneracy protected by the combined symmetry; (ii) a new Z(2) index may be defined for three-dimensional (3D) AFM insulators, but not for those in lower dimensions, and (iii) in 3D AFM insulators with a nontrivial Z(2) index, there are odd number of gapless surface modes if and only if the surface termination also preserves the combined symmetry, but the dispersion of surface states becomes highly anisotropic if the AFM propagation vector becomes small compared with the reciprocal lattice vectors. We numerically demonstrate the theory by calculating the spectral weight of the surface states of a 3D topological insulator in the presence of AFM fields with different propagation vectors, which may be observed by ARPES in Bi2Se3 or Bi2Te3 with induced antiferromagnetism.
引用
收藏
页数:15
相关论文
共 44 条
[21]   Inversion-symmetric topological insulators [J].
Hughes, Taylor L. ;
Prodan, Emil ;
Bernevig, B. Andrei .
PHYSICAL REVIEW B, 2011, 83 (24)
[22]   Z2 topological order and the quantum spin Hall effect -: art. no. 146802 [J].
Kane, CL ;
Mele, EJ .
PHYSICAL REVIEW LETTERS, 2005, 95 (14)
[23]  
Kitaev A, 2009, AIP CONF PROC, V1134, P22, DOI 10.1063/1.3149495
[24]   Quantum spin hall insulator state in HgTe quantum wells [J].
Koenig, Markus ;
Wiedmann, Steffen ;
Bruene, Christoph ;
Roth, Andreas ;
Buhmann, Hartmut ;
Molenkamp, Laurens W. ;
Qi, Xiao-Liang ;
Zhang, Shou-Cheng .
SCIENCE, 2007, 318 (5851) :766-770
[25]  
Kramers HA, 1930, P K AKAD WET-AMSTERD, V33, P959
[26]   Correlated Topological Insulators with Mixed Valence [J].
Lu, Feng ;
Zhao, JianZhou ;
Weng, Hongming ;
Fang, Zhong ;
Dai, Xi .
PHYSICAL REVIEW LETTERS, 2013, 110 (09)
[27]   Antiferromagnetic topological insulators [J].
Mong, Roger S. K. ;
Essin, Andrew M. ;
Moore, Joel E. .
PHYSICAL REVIEW B, 2010, 81 (24)
[28]   Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors [J].
Qi, Xiao-Liang ;
Wu, Yong-Shi ;
Zhang, Shou-Cheng .
PHYSICAL REVIEW B, 2006, 74 (08)
[29]   Topological insulators and superconductors [J].
Qi, Xiao-Liang ;
Zhang, Shou-Cheng .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04)
[30]   Topological invariants for the Fermi surface of a time-reversal-invariant superconductor [J].
Qi, Xiao-Liang ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
PHYSICAL REVIEW B, 2010, 81 (13)